Chapter 1

There are no in-chapter answers necessary for this chapter.

Chapter 2

2.1

<table>
<thead>
<tr>
<th>Pure</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounds</td>
<td>Solutions</td>
</tr>
<tr>
<td>(h) testosterone</td>
<td>(b) air</td>
</tr>
<tr>
<td>(f) sodium chloride</td>
<td>(c) vinegar</td>
</tr>
<tr>
<td>(g) athlete’s urine sample</td>
<td></td>
</tr>
<tr>
<td>Elements</td>
<td></td>
</tr>
<tr>
<td>(d) gold</td>
<td>(a) mud</td>
</tr>
<tr>
<td></td>
<td>(e) milk</td>
</tr>
</tbody>
</table>

Homogeneous Heterogeneous

2.2

(a) symbolic,
(b) observable
(c) molecular

2.3

(a) Na, Cl and Cr are the symbols for sodium, chlorine and chromium, respectively.
(b) Zn, Ni and K are the symbols for zinc, nickel and potassium.

2.4 Sucrose is a colorless molecular solid with a moderate melting temperature. Carbon is a black solid (graphite) or a hard crystalline material (diamond). Both are network solids. Hydrogen and oxygen are both colorless diatomic gases.
2.5 (a) In CO, there is one carbon atom for every oxygen atom (or the ratio of C to O atoms is 1:1).
(b) In CH₄, the C to H atom ratio is 1:4.
(c) In C₂H₂, the C to H atom ratio is 1:1.
(d) In C₆H₁₂O₆, C, H and O atoms are in proportion to 1:2:1.

2.6 Six carbon dioxide and six water molecules combine to form one glucose and six oxygen molecules.

2.7 Ozone and nitric oxide gases combine to form oxygen and nitrogen dioxide gases. The relative numbers of molecules of the four respective species are 1:1:1:1 – i.e. the stoichiometric coefficients.

2.8 The atom is bigger than the nucleus by the factor, 100 pm/0.001 pm = 10⁵. If the radius of the atom were 100 m, then the nucleus radius would be 100 m/10⁵ = 0.001 m = 1 mm. Very small pebbles and small peas are this size.

2.9 (a) 56 protons, 34 neutrons, 30 electrons
(b) 30 protons, 34 neutrons, 30 electrons

2.12 (a) \(^{36}\text{Ar}\), \(^{38}\text{Ar}\), \(^{40}\text{Ar}\). % abundance of \(^{40}\text{Ar}\) = 99.600 %
(b) \(^{69}\text{Ga}\): 31 protons, 38 neutrons
\(^{71}\text{Ga}\) (% abundance, 39.9 %): 31 protons, 40 neutrons

2.13 (a) 1.99875
(b) 2.16522
(c) 1.08329

2.14 Atomic weight of chlorine = \(\frac{75.77}{100} \times 34.96885 + \frac{24.23}{100} \times 36.96590 = 35.45\)

2.18 10

2.19 (a) 59 g
(b) \(1.90 \times 10^{24}\) atoms

2.20 0.97 g
3.1 BN

3.2 Sodium chloride is held together in a lattice by strong ionic bonds – attraction between positively and negatively charged ions. Silicon carbide is a network solid. The atoms are similarly held together in a lattice, but in this case it is by covalent bonds. Covalent bonds are generally stronger than ionic bonds. Silicon carbide is expected to have the higher melting point. This is in fact the case – silicon carbide decomposes at 2730 °C, while sodium chloride melts at 800°C.

3.3 (a) S has 16 protons and 16 electrons. S$^{2-}$ has 16 protons and 18 electrons. (b) Al has 13 protons and 13 electrons. Al$^{3+}$ has 13 protons and 10 electrons. (c) H has 1 proton and 1 electron. H$^+$ has 1 proton and no electrons.

3.4 N$^+$, O$^2-$, F$^-$, Na$^+$, Mg$^{2+}$, and Al$^{3+}$ have 7, 8, 9, 11, 12 and 13 protons, respectively. All of these species have 10 electrons, the number of electrons in a neutral Ne atom (10 protons).

3.6 (a) equal amounts of Na$^+$ and F$^-$ in NaF; twice as much NO$_3^-$ as Cu$^{2+}$ in Cu(NO$_3$)$_2$; equal amounts of Na$^+$ and CH$_3$CO$_2^-$ in NaCO$_2$CH$_3$. (b) FeCl$_2$ and FeCl$_3$ are the compounds formed by Fe$^{2+}$ and Fe$^{3+}$, respectively. (c) Na$_2$S, Na$_3$PO$_4$, BaS and Ba$_3$(PO$_4$)$_2$.

3.10 (a) 119.0 g mol$^{-1}$ (b) 53.5 g mol$^{-1}$ (c) 213 g mol$^{-1}$ (d) 120.3 g mol$^{-1}$

3.11 (a) 0.0250 mol (b) 6.95 x 10$^{-5}$ mol (c) 5 x 103 mol

3.14 (a) electrons (b) electrons and to a lesser extent Mg$^{2+}$ ions (they are less mobile) (c) Mg$^{2+}$ and Cl$^-$ ions (d) Mg$^{2+}$ and Cl$^-$ ions

3.15 (b), (d) and (e) are molecular substances.

3.16 Silicon has a much higher melting point because it is a network solid. It does not consist of discrete molecules. Covalent bonding extends throughout a lattice giving the material exceptional strength. Sulfur consists of discrete S$_8$ molecules which are, in turn, held in a lattice by weaker intermolecular bonds.

3.17 12C, 16O and 1H are the most common isotopes of carbon, oxygen and hydrogen. The molar mass of the most abundant isotopologue, 12C$_2$H$_6$O, is 46.04189 g mol$^{-1}$. This is not in exact agreement with the experimental value.
3.18 (a) 16.043 g mol$^{-1}$
(b) 58.080 g mol$^{-1}$
(c) 93.129 g mol$^{-1}$

3.19 (a) 1.53 g
(b) 4.60 g
(c) 4.59 g

3.23 A single chlorine atom
C_6H_5Cl
112.008002; 114.005052

3.24 $C_6H_5CHCH_2$ or C_8H_8

3.25 (a) C=O stretch - ketone, aldehyde or carboxylic acid
(b) C-N-H bend of an amine
(c) C≡N stretch of a nitrile
(d) C=O and O-H stretches of a carboxylic acid
(e) N-H and C=O stretches of an amide

Chapter 4

4.1 Covalent forces hold the carbon and hydrogen atoms together within a methane molecule.

4.2 Weak dispersion forces – a type of intermolecular or non-bonding force – hold neighboring methane molecules together.

4.3 The CFCs do not have H atoms bonded to C. Such H atoms readily react with hydroxyl radicals.

4.4 Most greenhouse gas absorption takes place in troposphere. This is where most of the IR absorbing compounds are found. IR absorbing molecules are generally heavier than most air molecules, and are found within the lowest layer of the atmosphere.

4.5 Nitrous oxide absorbs strongly in regions of the IR spectrum emitted by the earth that carbon dioxide and water do not absorb.

4.6 8.4×10^{17} g

4.7 Today, I drank from a plastic cup. The plastic material was polymerized from monomers obtained from fractionation and cracking, etc., of petroleum extracted from fossil deposits. I am using a number of plastic products today – for example, the keyboard keys I am typing on, and the computer monitor I am viewing. Another fraction of the same petroleum was used to drive my car. Natural gas – from fossil deposits of mostly methane – is used to heat my house.
Chapter 5

5.2 (a) balanced for electrical charge and for all relevant atoms
(b) balanced for electrical charge and for all relevant atoms
(c) NOT balanced for electrical charge; balanced for Ca and C, but NOT for O atoms

5.4 4.5 mol of O₂(g)
 3.0 mol of Al₂O₃(s)

5.5 (a) A small amount of solid sodium chloride in water has a higher chemical potential than a dilute solution of sodium chloride.
 (b) A dilute solution of sodium chloride is more stable than a small amount of solid sodium chloride in water.

5.6 (a) Neither. Chemical potential on both sides of these reactions are equal.
 (b) A mixture of solid calcium carbonate in pure water has a higher chemical potential than a mixture containing solid calcium carbonate and Ca²⁺(aq) ions and CO₃²⁻(aq) both at a concentration of 6 × 10⁻⁵ mol L⁻¹.
 (c) A mixture containing solid calcium carbonate and Ca²⁺(aq) ions and CO₃²⁻(aq) both at a concentration of 6 × 10⁻⁵ mol L⁻¹ is more stable than a mixture of solid calcium carbonate in pure water.

5.7 26.7 g of oxygen reacts with 25.0 g of glucose. 36.7 g of CO₂ and 15.0 g of H₂O are formed.
5.11 (a) CO is the limiting reactant
(b) 407 g of CH₃OH produced
(c) 14 g of H₂ remain

5.12 (a) Fe₂O₃ is the limiting reactant
(b) 35.0 g of Fe

5.17 Theoretical yield of hydrogen = 15.7 g
Percent yield of hydrogen = 86.6 %

5.19 Mass percent of NiS = 13.8 %

Chapter 6

6.1 (a) 108.99 mL
(b) 109.06 mL
(c) 100.01 mL
(d) 100.00 mL
(e) 100.03 mL

6.2 35 s

6.3 (a) 1.10 x 10³ kJ
(b) 727 kJ

6.4 diethyl ether > carbon disulfide > acetone > bromine > hexane > ethanol > water

6.5 The order of normal boiling points is the same as the order of enthalpy changes of vaporization. This is what we expect because both boiling point and enthalpy change of vaporization increase with increasing strength of intermolecular forces.
6.6 The surface tension is that which pulls the drop into a spherical shape – minimizing surface area. Since this force is smaller for diethyl ether we expect its drops to be even more distorted by gravity than those of water.

6.7 (a) The intermolecular force of attraction between water molecules and other water molecules or the molecules on the surface of the blade of grass is sufficient to allow water molecules to stick together on the blade of grass.
(b) When a piece of paper burns, carbon-carbon and carbon-hydrogen bonds are broken while new bonds with oxygen are formed. Intramolecular forces are the losing (in the breaking reactant bonds) and winning forces (in the making of bonds) at work when paper burns.
(c) Intermolecular forces holding water molecules together, and next to clothes fiber molecules, are overcome when wet clothes are hung out to dry.
(d) Intermolecular forces cause water molecules to arrange themselves into a lattice of lowest potential energy. The freezer takes away the kinetic energy thereby liberated, leaving water in its crystalline, solid form – ice.

6.9 (a) H→F is more polar than H→I
(b) B→C is less polar than B→F
(c) C←Si is more polar than C→S

6.10 (a) The C=O and C-H bonds are polar, while C=C and C=C are non-polar.
(b) The C=O bond is the most polar, with O at the negative end.

6.12 CS₂ and CO₂ are non-polar because of their linear shape. SO₂ and H₂O are polar because of their bent shape. The two bond dipoles vectors only partially cancel out, leaving a NET dipole moment.

6.13 (a) BFCl₂ is trigonal planar. It has a NET dipole because one of the three bonds is different – more polar – than the other two. If the three substituents on B were the same, as in BCl₃, then the bond dipoles would cancel.
(b) NH₂Cl is trigonal pyramidal. It has a NET dipole because it is asymmetrical and has one bond different from the other two – N-Cl vs. N-H.
(c) SCl₂ is bent like water. It has a NET dipole because the S-Cl bond dipoles only partially cancel out.

6.15 (a) Bent SO₂ has a net dipole. So, there are dipole-dipole forces between neighboring molecules.
(b) Linear CO₂ has no net dipole. There are no dipole-dipole forces between these molecules – only dispersion forces.
(c) HCl has just one polar bond, and so has a dipole moment. There are dipole-dipole forces between neighboring molecules.
6.17 \[
\text{CH}_3\text{-O} \cdots \text{O-H}
\]
shows the hydrogen bonding between neighbouring methanol molecules as they move past each other.

6.19 (a) bromine
(b) butane

6.23 (a) ICl
(b) Krypton
(c) ethanol

6.24 (a) dispersion forces
(b) hydrogen bonds and dispersion forces
(c) dispersion forces

6.27 Mg2+(aq) and Br-(aq) are the main species present in solution when some magnesium bromide, MgBr\textsubscript{2}(s), is dissolved in water.

6.28 (a) soluble

\[
\text{LiNO}_3(s) \xrightarrow{H_2O} \text{Li}^+(aq) + \text{NO}_3^-(aq)
\]

(b) soluble

\[
\text{CaCl}_2(s) \xrightarrow{H_2O} \text{Ca}^{2+}(aq) + 2 \text{Cl}^-(aq)
\]

(c) insoluble

(d) soluble

\[
\text{NaCH}_3\text{COO}(s) \xrightarrow{H_2O} \text{Na}^+(aq) + \text{CH}_3\text{COO}^-(aq)
\]

6.29 (a) Ammonia, NH\textsubscript{3}(g), is soluble in water because water molecules can make strong hydrogen bonds with ammonia molecules – O-H and H-N.
(b) Hydrogen chloride, HCl(g), is soluble in water because water molecules can make strong hydrogen bonds with HCl molecules – O-H only.
(c) Iodine, I\textsubscript{2}(s), is non-polar and insoluble in water. Only dispersion-like forces can be made between water and I\textsubscript{2}. This interaction is weaker than the dispersion force between I\textsubscript{2} molecules.
(d) Octane, C\textsubscript{8}H\textsubscript{18}(l) is non-polar and insoluble in water. Only dispersion-like forces can be made between water and octane. This interaction is weaker than the dispersion force between octane molecules.

6.30 (a) Benzene, C\textsubscript{6}H\textsubscript{6}(l), is non-polar and soluble in non-polar octane. Dispersion forces are all that are at play in the pure substances and mixtures. The entropy of mixing is sufficient to drive dissolution.
(b) Water is polar and insoluble in non-polar octane. It turns out that reason for this is more subtle than appears. Dissolving octane in water decreases the entropy of neighboring water molecules. This effect overwhelms the entropy of mixing, and dissolution is not spontaneous.

(c) Iodine, I_2(s), is non-polar and soluble in non-polar octane. Dispersion forces are all that are at play in the pure substances and mixtures. The entropy of mixing is sufficient to drive dissolution.

6.31 Butan-1-ol, CH₃CH₂CH₂CH₂OH(l), should be more soluble in hexane than butan-2,4-diol, HOCH₂CH₂CH₂CH₂OH(l). The latter compound has two hydroxyl (-OH) groups vs. only one for the former. Like the –O-H of water, these hydroxyls do not spontaneously mix with hexane – that is, not without the help of the favorable dispersion interactions of the alkyl chains.

6.32 (a) HBr(g) + H₂O(l) → H₃O⁺(aq) + Br⁻(aq)
(b) HF(aq) + H₂O(l) → only some ionised H₃O⁺(aq) + F⁻(aq)
(c) HCOOH(aq) + H₂O(l) → only some ionised HCOO⁻(aq) + H₃O⁺(aq)
(d) C₁₂H₂₂O₁₁(s) → only some ionised H₂O C₁₂H₂₂O₁₁(aq)

6.36 (a) Cu²⁺(s) + CO₃²⁻(aq) → CuCO₃(s)
 Na⁺ and Cl⁻ are spectator ions

(b) No precipitate forms

(c) Ni²⁺(s) + 2 OH⁻(aq) → Ni(OH)₂(s)
 K⁺ and Cl⁻ are spectator ions

6.37 Fe²⁺ is oxidized to Fe³⁺. The oxidizing agent is MnO₄⁻. MnO₄⁻ is reduced to Mn²⁺. Fe²⁺ is the reducing agent.

6.38 (a) HCOOH is the acid reactant, while OH⁻ is the base reactant.
(b) H₂CO₃ is the acid reactant, while NH₃ is the base reactant.
(c) H₂C₂H₂O₉ is the acid reactant, while HCOO⁻ is the base reactant.
(d) H₂O⁻ is the acid reactant, while CH₃NH₂ is the base reactant.

6.39 (a) H₃O⁺(aq) + OH⁻(aq) → 2 H₂O(l)
 Li⁺ and Br⁻ are spectator ions

(b) H₂CO₃(aq) + OH⁻(aq) → HCO₃⁻(aq) + H₂O(l)
 and HCO₃⁻(aq) + OH⁻(aq) → CO₃²⁻(aq) + H₂O(l)
 K⁺ is a spectator ion.

(c) H₃O⁺(aq) + CH₃NH₂(aq) → H₂O(l) + CH₃NH₃⁺(aq)
 NO₃⁻ is a spectator ion
(d) \(\text{H}_2\text{Citrate}^{\text{aq}} + \text{OH}^- \text{(aq)} \rightarrow \text{H}_2\text{Citrate}^{\text{aq}}^\text{-} + \text{H}_2\text{O(l)} \)

\(\text{H}_2\text{Citrate}^{\text{aq}}^\text{-} + \text{OH}^- \text{(aq)} \rightarrow \text{H}^\text{Citrate}^{\text{aq}}^\text{2-} + \text{H}_2\text{O(l)} \)

\(\text{H}^\text{Citrate}^{\text{aq}}^\text{2-} + \text{OH}^- \text{(aq)} \rightarrow \text{Citrate}^{\text{aq}}^\text{3-} + \text{H}_2\text{O(l)} \)

Na\(^+\) is a spectator ion

6.40

(a) \(\text{Co}^{2+} \) is the Lewis acid, while \(\text{Cl}^- \) is the Lewis base.
(b) \(\text{Fe}^{2+} \) is the Lewis acid, while \(\text{CN}^- \) is the Lewis base.
(c) \(\text{Ni}^{2+} \) is the Lewis acid, while \(\text{CH}_3\text{NH}_2 \) is the Lewis base.
(d) \(\text{Cu}^{2+} \) is the Lewis acid, while \(\text{Cl}^- \) and \(\text{NH}_3 \) are the Lewis bases.

6.41

6.42

(a) \(\text{[Co(H}_2\text{O)}_6]^{2+}\text{(aq)} + 4 \text{Cl}^-\text{(aq)} \rightarrow \text{[CoCl}_4]^{2-}\text{(aq)} + 6 \text{H}_2\text{O(l)} \)

Lewis base, \(\text{Cl}^- \), competes successfully with the Lewis base, \(\text{H}_2\text{O} \), to complex \(\text{Co}^{2+} \).

(b) \(\text{[Fe(H}_2\text{O)}_6]^{2+}\text{(aq)} + 6 \text{CN}^-\text{(aq)} \rightarrow \text{[Fe(CN)}_6]^{4-}\text{(aq)} + 6 \text{H}_2\text{O(l)} \)

Lewis base, \(\text{CN}^- \), competes successfully with the Lewis base, \(\text{H}_2\text{O} \), to complex \(\text{Fe}^{2+} \).

(c) \(\text{[Ni(H}_2\text{O)}_6]^{2+}\text{(aq)} + 2 \text{CH}_3\text{NH}_2\text{(aq)} \rightarrow \text{[Ni(CH}_3\text{NH}_2)_2]^{2+}\text{(aq)} + 6 \text{H}_2\text{O(l)} \)

Lewis base, \(\text{CH}_3\text{NH}_2 \), competes successfully with the Lewis base, \(\text{H}_2\text{O} \), to complex \(\text{Ni}^{2+} \).

(d) \(\text{[Cu(H}_2\text{O)}_6]^{2+}\text{(aq)} + 4 \text{Cl}^-\text{(aq)} + 2 \text{NH}_3\text{(aq)} \rightarrow \text{[Cu(NH}_3)_2\text{Cl}_4]^{2-}\text{(aq)} + 6 \text{H}_2\text{O(l)} \)

Lewis bases, \(\text{Cl}^- \) and \(\text{NH}_3 \), compete successfully with the Lewis base, \(\text{H}_2\text{O} \), to complex \(\text{Cu}^{2+} \).

6.43 0.478 mol\text{L}^{-1}
(d) (A) and (B) have the same concentration – (B) is just a sample of (A).

6.49
(a) 0.50 mol L$^{-1}$ NH_4^+ (aq) and 0.25 mol L$^{-1}$ SO_4^{2-} (aq)
(b) 0.246 mol L$^{-1}$ Na^+ (aq) and 0.123 mol L$^{-1}$ CO_3^{2-} (aq)
(c) 0.056 mol L$^{-1}$ H_3O^+ (aq) and NO_3^- (aq)

Chapter 7

7.1
(a) 1 mol each of H^+ (aq) ions and OH^- (aq) ions, that have not reacted, have more energy than 1 mol of water.
(b) Your fingers would feel hot. This is because the negative energy change requires removal of excess energy.

7.3 The chemical potential energy stored in a battery can be converted to the mechanical energy of sound waves – from your mp3 player – the electrical and magnetic energy of an image taken by your digital camera, or the light energy emitted by a flashlight – to name a few possibilities.

7.4 Heat always flows from higher temperature (water) to lower temperature (air).

7.5
(a) The system is the contents of the combustion chamber of the gas furnace – a mixture of air and methane. The surroundings are the furnace and everything around it.
(b) The system is the water drops plus the air around you. The surroundings consist of your body and the sun – they provide the heat that evaporates the water drops.
(c) The water, initially at 25 °C, is the system. The container and the rest of the freezer contents – including the air – are the surroundings.
(d) The aluminum and $\text{Fe}_2\text{O}_3(s)$ mixture is the system (initially – later it consists of $\text{Al}_2\text{O}_3(s)$ and iron). The flask and the laboratory bench are the surroundings.

7.6
(a) The volume of a balloon is a state function.
(b) The time it takes to drive from your home to your college or university is NOT a state function.
(c) The temperature of the water in a coffee cup is a state function.
(d) The potential energy of a ball held in your hand is a state function.

7.7 333 kJ

7.10 32.1 kJ

7.11 0.16 kJ

7.12 heat evolved = 2.38 kJ

7.15 −56.3 kJ
7.16 (a) molecular liquid Br₂(l).
(b) metallic liquid, Hg(l).
(c) ionic solid Na₂SO₄(s).
(d) molecular liquid CH₃CH₂OH(l).
(e) 1 mol L⁻¹ concentration Cl⁻(aq).

7.17 (a) The standard enthalpy change of this reaction, \(\Delta H^\circ\), is the heat absorbed (hence a negative number when is evolved) at a constant temperature of 25 °C, when exactly 1.00 mol of CO(g) and 0.500 mol of O₂(g) – both gases separately at 1 bar pressure – are combined in a vessel such that the total pressure is 1 bar (i.e. 1 \(\frac{1}{2}\times\) the vessel containing the carbon monoxide), then reacted completely at fixed pressure to form 1 mol CO₂(g) at 1 bar.
(b) The standard enthalpy change of this reaction, \(\Delta H^\circ\), is the heat absorbed under constant pressure conditions of 1 bar, and constant temperature at 25 °C, when exactly 1.00 mol of Mg(s) and 2.00 mol of H⁺(aq) at 1.00 mol L⁻¹ concentration react completely to form 1.00 mol of Mg²⁺(aq) at 1.00 mol L⁻¹ concentration and 1 mol H₂(g) at 1 bar partial pressure.
(c) The standard enthalpy change of this reaction, \(\Delta H^\circ\), is the heat absorbed under constant pressure conditions of 1 bar, and constant temperature at 25 °C, when exactly 1.00 mol of H⁺(aq) and 1.00 mol of OH⁻(aq) both at 1.00 mol L⁻¹ concentration react completely to form 1.00 mol of H₂O(l).

7.19 (a) 1.9 kJ

7.20 116.8 kJ

7.21 (a) The standard molar enthalpy of formation of bromine, Br₂(l), is the standard enthalpy change of the following reaction:
Br₂(l) \(\rightarrow\) Br₂(l) at 25 °C

(b) The standard molar enthalpy of formation of solid iron (III) chloride, FeCl₃(s), is the standard enthalpy change of the following reaction:
Fe(s) + Cl₂(g) \(\rightarrow\) FeCl₃(s) at 25 °C

(c) The standard molar enthalpy of formation of solid sucrose, C₁₂H₂₂O₁₁(s), is the standard enthalpy change of the following reaction:
12 C(graphite) + 11 H₂(g) + \(\frac{11}{2}\) O₂(g) \(\rightarrow\) C₁₂H₂₂O₁₁(s) at 25 °C

7.22 The standard molar enthalpy of formation of liquid methanol, CH₃OH(l), is the standard enthalpy change of the following reaction:
C(graphite) + 2 H₂(g) + \(\frac{1}{2}\) O₂(g) \(\rightarrow\) CH₃OH(l) at 25 °C

7.26 -3267.4 KJ

7.27 -53 KJ

7.28 -694 KJ
7.31 (a) FALSE
(b) TRUE
(c) TRUE
(d) TRUE

Chapter 8

8.1 (a) Element with atomic number 8 greater than F – i.e. atomic number = 17 – is Cl.
Element with atomic number 18 greater than Cl – i.e. atomic number = 35 – is Br.
Element with atomic number 18 greater than Br – i.e. atomic number = 53 – is I.
Element with atomic number 32 greater than I – i.e. atomic number = 85 – is At.
These are all halogens.
(b) The atomic numbers of the group 15 elements, N, P, As, Sb & Bi, are
7, 15, 33, 51 and 83
Differences between successive atomic numbers = 8, 18, 18 and 32.

8.2 (a) Strontium, Sr(s)
(b) Calcium, Ca(s)
(c) Rubidium, Rb(s)

8.3 (a) Bromine, Br₂(g)
(b) Sodium, Na(s)
(c) Chlorine, Cl₂(g)
(d) The elements with atomic numbers 34, 35, 36, 37, and 38 are Se, Br, Kr and Rb. Rubidium, Rb, is the most powerful reducing agent.

8.5 C < Si < Al

8.7 (c) Li < Si < C < Ne

8.8 (a) The fourth ionization energy of Al is much larger than the third – more so than successive ionization energies usually increase. After removing three electrons from an aluminum atom – the result of the first three ionization steps – the atom (now an ion) is left with the electron configuration of Ne, a noble gas. Al³⁺ has filled n=1 and n=2 shells. The next electron to be removed is a tightly held member of the second shell. The first three electrons came from the third shell.
(b) Mg

8.9 (a) +2
(b) -2

8.13 (a) Cl⁻
(b) Ba²⁺
(c) K
(d) Se²⁻
8.14
(a) O^{-}
(b) Cl^{-}

8.15
(a) $O < C < Si$
(b) $Si < C < O$
(c) $Si < C < O$

8.16
(a) $-1.46 \times 10^{5} \text{Jmol}^{-1} = -146 \text{kJmol}^{-1}$
(b) 182 KJmol$^{-1}$

8.18
2.043 x 10$^{-18}$ J; 308.3 THz; 97.24 nm

8.19
2.2 x 10$^{-25}$ nm

8.20

8.22
(a) valid
(b) not valid
(c) not valid

8.24
(a) 0 or 1
(b) -1, 0 or 1
(c) d subshell
(d) l is 0 and m_l has the value 0
(e) 3 orbitals
(f) 7 values of m_l

8.25
(a) $n = 4, l = 2, m_l = 0, m_s = 0$ is not valid because m_s is always $\pm \frac{1}{2}$ because $s = \frac{1}{2}$ for an electron. m_s is never equal to zero.
(b) $n = 3, l = 1, m_l = -3, m_s = -\frac{1}{2}$ is not valid because $m_l = -3$ does not go with $l = 1$. $m_l = -1, 0, or 1$ in this case.
(c) $n = 3, l = 3, m_l = -1, m_s = +\frac{1}{2}$ is not valid because l must be less than or equal to $n - 1$.

14 Chemistry, First Canadian Edition
8.27

(a) 90% isosurface of 1s orbital
 50% isosurface of 1s orbital

(b) 90% isosurface of 2s orbital
 90% isosurface of 1s orbital

8.28

s orbital 90% isosurface

p orbital 90% isosurface

8.30

(a) 18
(b) 10
(c) 1
(d) none

8.32

[Ne] \[\uparrow \downarrow\] \[\uparrow \uparrow\] \[\uparrow\uparrow\]

3s \[3p\]

The last five electrons correspond to the quantum numbers,

\(n = 3, \)
\(l = 0 \) and \(m_l = 0, \) and \(m_s = -\frac{1}{2} \) or \(+\frac{1}{2} \) 2 electron states
\(l = 1 \) and \(m_l = -1, 0 \) or \(1 \) and \(m_s = +\frac{1}{2} \) 3 electron states
8.34 $Z^*(_{12}\text{Mg}) = +2.85; \ Z^*(_{15}\text{P}) = +4.8; \ Z^*(_{18}\text{Ar}) = +6.75$

8.35 $Z^*(_{16}\text{O}) = +4.55; \ Z^*(_{16}\text{O}^-) = +3.85$

8.36 Although ^{86}Po has a lot more electrons than ^{11}Na, the electrons of Po are held so much more tightly that it is smaller. The effective nuclear charges, +5.45 and +2.2, show that even the valence electrons of Po are held more tightly than the valence electrons of Na. The valence electrons determine the size of the atom.

8.39 $Z^*(\text{Na}) = +2.2; \ Z^*(\text{Si}) = +4.15; \ Z^*(\text{Ar}) = +6.75$

8.40 $Z^*(\text{N}^3-) = +2.85; \ Z^*(\text{S}^3-) = -0.8$

N can form a $3-$ ion because the valence electrons are still held by an effective nuclear charge of +2.85. S cannot form such an ion because its valence electrons would be repelled by a net negative effective nuclear charge. Adding an electron to S^{2-} requires putting the electron in a new shell which is well-shielded by the filled shells.

8.41 $Z^*(\text{Na}^+) = +6.85; \ Z^*(\text{Mg}^{2+}) = +7.85; \ Z^*(\text{Al}^{3+}) = +8.85$

The valence electrons of these three ions are increasingly tightly held. This is consistent with the trend in sizes – the ions decrease in size.

8.42 $Z^*(\text{Mg}^+) = +2.5; \ Z^*(\text{Cl}^-) = +5.75$

The larger effective nuclear charge in Cl^- shows that chlorine has a greater attraction for an additional electron. This is consistent with chlorine having a larger electronegativity.

8.43 $Z^*(\text{Ar}^-) = +1.2$

We see that Ar will hold an extra electron even less tightly than Mg. Argon, being inert, has no electronegativity. Its electronegativity cannot be defined since it forms no chemical bonds.

Chapter 9

9.1 The spectra on the left and right are those of diethyl ether and butan-1-ol, respectively.

9.2 One could distinguish butan-1-ol and diethyl ether by looking for the distinctive O-H stretch peak (broad peak around $3200-3550 \text{ cm}^{-1}$) of butan-1-ol in the IR spectra.

9.3 The spectra on the right and left are those of propan-2-amine and propan-1-amine, respectively.

9.4 (a) 1
(b) 4
(c) 3
(d) 7

9.5 (a) 1 peak in both carbon-13 and proton spectra
(b) 1 peak in both carbon-13 and proton spectra
(c) 2 peaks in both carbon-13 and proton spectra
(d) 1 peak in both carbon-13 and proton spectra
(e) 1 peak in both carbon-13 and proton spectra
(f) 1 peak in both carbon-13 and proton spectra
(g) 2 peaks in both carbon-13 and proton spectra
(h) 2 peaks in both carbon-13 and proton spectra
(i) 2 peaks in carbon-13 spectrum and 1 peak in proton spectrum

9.6

This is the eclipsed conformation – it is the least stable.

9.7

These are the Newman projections of the three staggered conformations. The conformation on the left has the lowest energy. The other two have the same energy.

These are the Newman projections of the three eclipsed conformations. The conformation on the left has the highest energy. The other two have the same energy.
9.8 There is only one staggered and one eclipsed conformation of propane.

For ethane and butane, the energy as a function of angle of rotation about the C-C bond (the 2-3 bond in butane) looks like

9.10 (a) C₅H₅N: one H atom is bonded to each C atom
(b) C₆H₁₂O: two H atoms are bonded to each C atom, except the C=O carbon
(c) C₈H₆NH: one H atom is bonded to each C atom, except the two C atoms belonging to both rings

9.14

9.15

Here are the equatorial (on the left) bromine and axial bromine conformations of bromocyclohexane. The equatorial positions are circled.
9.17 Since $[\alpha]_D = 16^\circ$ is positive for cocaine, cocaine is termed dextrorotatory.

9.18 16.1°

9.21 (a) $-\text{Br} > -\text{CH}_2\text{CH}_2\text{OH} > -\text{CH}_2\text{CH}_3 > -\text{H}$
(b) $-\text{OH} > -\text{CO}_2\text{CH}_3 > -\text{CO}_2\text{H} > -\text{CH}_2\text{OH}$
(c) $-\text{Br} > -\text{Cl} > -\text{CH}_2\text{Br} > -\text{CH}_2\text{Cl}$

9.22

At the carbon stereocenter, the configurations are (a) S, (b) S and (c) R

9.23

At the top and bottom (respectively) carbon stereocenter, the configurations are (a) R and R
(b) S and R, and (c) R and S

9.24 At the top and bottom (respectively) carbon stereocenter, the configurations are R and R

9.25 (a) is a meso compound
(b) is a meso compound

9.26 (a) and (c) are meso molecules – they are R, S. (b) is an R, R enantiomer.

9.27 Nandrolone has 6 stereocenters. There could in principle be as many as $2^6 = 64$ different stereoisomers.

9.28 Darvon is the $2R,3S(+)$ enantiomer of propoxyphene.
Novrad is the $2S,3R$ (-) enantiomer.
10.3 \(\text{NH}_4^+ \)

\[
\begin{align*}
\text{NH}_4^+ & \quad \text{H} \\
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

CO

\[
\text{C} \equiv \text{O} \\
\text{C} \equiv \text{O}
\]

\(\text{SO}_4^{2-} \)

\[
\begin{array}{c}
\text{O} \\
\text{S} \\
\text{O} \\
\text{O}
\end{array}
\]

10.4

\(\text{CH}_3\text{OH} \) \quad \text{NH}_2\text{OH}

\[
\begin{align*}
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]
10.5

\[
\text{[Diagram of a molecule]} \\
\text{[Diagram of a molecule]}
\]

10.6 (a) Acetylide ion, \(C_2^{2-} \), is isoelectronic with \(N_2 \).
(b) \(\text{SO}_2 \)
(c) \(\text{OH}^- \)

10.9

The three resonance structures of nitrate, \(\text{NO}_3^- \).

\[
\text{[Resonance structure 1]} \\
\text{[Resonance structure 2]} \\
\text{[Resonance structure 3]}
\]

A structure for nitric acid, \(\text{HNO}_3 \)

10.11

The structure on the right, with no formal charges, is the preferred Lewis structure.
Equivalent resonance structures that together best describe the charge distribution within ozone.

Tetrahedral shape. The Cl—C—Cl bond angle is predicted to be 109.5°

BF₃ is trigonal planar. BF₄⁻ is tetrahedral.

(a) phosphate ion, PO₄³⁻, is tetrahedral
(b) phosphoric acid molecule, H_3PO_4, is tetrahedral at the P.

(c) sulfate ion, SO_4^{2-}, is tetrahedral.

(d) sulfite ion, SO_3^{2-}, is trigonal pyramidal.

(e) ethanol is tetrahedral at the carbons and bent at the oxygen.

(f) Acetone, $\text{CH}_3\text{C(O)}\text{CH}_3$, is trigonal planar at the carbonyl carbon and tetrahedral at the methyl carbons.
Lewis structures of (a) hydronium ion, and (b) methyl amine

(a) The O atom of hydronium has four electron regions - distributed tetrahedrally. This means sp^3 hybridization at O. Three of the sp^3 orbitals overlap with s orbitals on H atoms to form the O-H bonds, while the fourth accommodates the lone pair on O.

(b) The C atom has four electron regions - distributed tetrahedrally. This means sp^3 hybridization at C. Three of the sp^3 orbitals overlap with s orbitals on H atoms to form the C-H bonds, while the fourth makes a bond with the N atom.

The N atom has four electron regions - distributed tetrahedrally. Consequently, we have sp^3 hybridization at N. Two of the sp^3 orbitals overlap with s orbitals on H atoms to form the N-H bonds, one of them forms the bond with carbon, while the fourth accommodates the lone pair on N.
The methyl C atoms have the tetrahedral distribution of electron regions. This means sp^3 hybridization at the methyl carbon atoms. Three of the sp^3 orbitals overlap with s orbitals on H atoms to form the C-H bonds, while the fourth makes a bond with the carbonyl C atom. The carbonyl C atom has a trigonal-planar arrangement of electron regions - consequently, we use sp^2 hybridization here. The C-C bonds are formed from carbonyl-carbon sp^2 orbitals, and methyl-carbon sp^3 orbitals. The remaining sp^2 orbital forms the σ bond to oxygen. The oxygen atom has three electron regions – the trigonal-planar arrangement – as depicted above. This O atom uses one sp^2 orbital to make the σ bond to C. The remaining two sp^2 orbitals accommodate lone pairs. The C=O double bond is formed from the unhybridized p orbitals on each atom – both atoms are sp^2 hybridized with one unhybridized p orbital. This $p-p$ bond is the C-O π bond.

10.20

\[\text{:N} \equiv \text{N}: \]

The N atoms have a linear arrangement of two electron regions. This means sp hybridization. An sp orbital from each N atom is used to make the N-N σ bond. The remaining sp orbitals accommodate the lone pairs – one on each atom. The two remaining p orbitals on each atom overlap in pairs to form the two N-N π bonds. Specifically, the p_x orbitals overlap to form the π_x bond, while the p_y orbitals overlap to form the π_y bond.
The H-C-H, H-C-C, and C-C-N bond angles are estimated to be 109.5°, 109.5° and 180°, respectively.

The methyl C atom has the tetrahedral distribution of electron regions - sp^3 hybridization at the methyl carbon atoms. Three of the sp^3 orbitals overlap with s orbitals on H atoms to form the C-H bonds, while the fourth makes a bond with the nitrile C atom.

The nitrile C and N atoms have a linear arrangement of two electron regions. This means sp^2 hybridization. One sp orbital from each atom are used to make the C-N σ bond. The remaining sp orbital on the nitrile C atom forms the bond with the methyl C atom, while the remaining sp orbital on the N atom accommodate the lone pair.

The two remaining p orbitals on the nitrile C and N atoms overlap in pairs to form the two C-N π bonds. Specifically, the p_x orbitals overlap to form the π_x bond, while the p_y orbitals overlap to form the π_y bond.

The methyl C atom has the tetrahedral distribution of electron regions - sp^3 hybridization at the methyl carbon atoms. Three of the sp^3 orbitals overlap with s orbitals on H atoms to form the C-H bonds, while the fourth makes a bond with the carbonate C atom.

The carbonate C atom has a trigonal-planar arrangement of electron regions - sp^2 hybridization here. The C-C bond is formed from one of these sp^2 orbitals, and a methyl-carbon sp^3 orbital. The remaining two sp^2 orbitals form σ bonds to oxygen atoms.

The oxygen atoms can be described as sp or sp^2 hybridized. Because of symmetry, we should use the same description for both atoms – in contrast to the Lewis structure which implies that one of the O atoms is sp^3 hybridized. We will assume sp hybridized O atoms. Each O atom uses one sp orbital to make a σ bond to C. The other sp orbital on each atom accommodates a lone pair. The other lone pair, on each O atom, occupies one of the two unhybridized p orbitals. What remains are a p orbital on each of the O atoms and the unhybridized p orbital on the carbonate carbon atom – three orbitals in all. Two electron pairs also remain. In a valence bond description, a π bond is formed using the p orbital on C and one of the O atom p orbitals. The other O-atom p orbital accommodates the remaining lone pair of electrons. This can be written in one of two equivalent ways – the resonance structures of carbonate. However, because of
symmetry it is more accurate to think of the \(p \) orbital on C and both of the O atom \(p \) orbitals forming a delocalized \(\pi \) bond, though this goes beyond valence bond theory. We must think of the two O atom \(p \) orbitals being combined to form two delocalized (over the two O atoms) orbitals – analogous to orbital hybridization except that the orbitals are on different atoms (these are molecular orbitals). One of the delocalized orbitals forms a symmetric \(\pi \) bond with carbon, the other accommodates the remaining lone pair of electrons.

10.25

\[
\begin{align*}
H_2^+ &: (\sigma_{1s})^1 \\
He_2^+ &: (\sigma_{1s})^2(\sigma_{1s}^*)^1 \\
H_2^- &: (\sigma_{1s})^2(\sigma_{1s}^*)^1
\end{align*}
\]

\(H_2^+ \) has a bond order of \(\frac{1}{2} \). It should exist. But, it is weakly bound. \(He_2^+ \) and \(H_2^- \) have the same bond order.

10.26 \(Li_2^- \) anion should exist. It is weakly bound with bond order, \(\frac{1}{2} \).

10.27 Electron configuration of ground state \(O_2^+ \)

\([\text{core electrons}](\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p_y})^2(\pi_{2p_z})^2(\sigma_{2p_z})^2(\pi_{2p_y})^1\)

Bond order = 2 \(\frac{1}{2} \)

\(O_2^+ \) is expected to be paramagnetic. Its electron configuration shows an unpaired electron.

Chapter 11

11.4 \(32 \times 10^4 \) L

11.5 650 balloons

11.6 136 kPa

11.10 121 g mol\(^{-1}\)

11.13 \(P(C_2HBrClF_3) = 37.7 \) kPa

\(P(O_2) = 364 \) kPa

11.16 0.798

11.17 Taking He as the reference, \(\text{Rate of effusion of SF}_6 \) = 0.166

\(\frac{\text{Rate of effusion of SF}_6}{\text{Rate of effusion of He}} \)

and \(\text{Rate of effusion of N}_2 \) = 0.378

\(\frac{\text{Rate of effusion of N}_2}{\text{Rate of effusion of He}} \)
11.19 160 \text{ gmol}^{-1}

11.23 (a) the dispersion forces in liquid O_2 < (c) the dipole induced dipole interactions of O_2 dissolved in H_2O < (b) the hydrogen bonding forces in liquid CH_3OH

11.25 (a) 167 mmHg
(b) the vapour and liquid are NOT at equilibrium – the vapour is supersaturated and vapour condenses to form more liquid.

11.26 0.50 g of water is not enough to achieve a partial pressure of 19.3 kPa. Instead, we achieve only 15 kPa.
With 2.0 g of water, the partial pressure of water would be 19.3 kPa.

11.27 (a) The density of liquid CO_2 is less than that of solid CO_2.
(b) gas phase
(c) No.

Chapter 12

12.2 (i) The lattice enthalpy of LiCl(s) is larger than that of KCl(s) because the Li^+ ion is smaller than K^+ and so gets closer to Cl^−. The electrostatic potential energy is lower – it takes more energy to break the ionic bonds.
(ii) The enthalpy of aquation of Li^+ and Cl^− is larger in magnitude than that of K^+ and Cl^− (they are both negative) because the Li^+ ion is smaller than K^+. The interaction of water molecules with Li^+ is stronger than with K^+ because they get closer to the smaller lithium ions.

12.4 $1.12 \times 10^{-2} \text{ mol L}^{-1}$

12.5 The solubility of Li_2SO_4 in water decreases slightly as we increase the temperature from 10 °C. The amount of solid Li_2SO_4 in the second beaker will increase a little.
The solubility of LiCl in water increases slightly as we increase the temperature from 10 °C. The amount of solid LiCl in the first beaker will decrease.

12.7 mole fraction = 0.00210
molality = $0.117 \text{ mol kg}^{-1}$
mass percent = 3.85%

12.8 19.85 kPa

12.10 4.66 kPa

12.12 The freezing point of the solution is −5.25 °C. The added ethylene glycol is not enough to prevent freezing at −25 °C.

12.14 472 g mol$^{-1}$
12.16 \(-2.81 \degree C\)

12.18 \(1.40 \times 10^5 \text{ g mol}^{-1}\)

12.19 754 kPa

12.20 (a) volume = \(4.19 \times 10^6 \text{ nm}^3\)
Surface area = \(1.26 \times 10^5 \text{ nm}^2\)

(b) \(2.4 \times 10^{14}\) spheres; surface area = 30 m²

Chapter 13

13.3 (a) \(Q = \frac{[\text{PCl}_3][\text{Cl}_2]}{[\text{PCl}_5]}\)

(b) \(Q = \frac{[\text{CO}]^2}{[\text{CO}_2]}\)

(c) \(Q = \frac{[\text{Cu}^{2+}][\text{NH}_3]^4}{[\text{Cu}^{2+}(\text{NH}_3)_4]}\)

(d) \(Q = \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]}\)

13.5 (a) \(Q_c = 2.25\). NOT at equilibrium. Because \(Q_c < K_c\), the reaction proceeds in the forward direction.

(b) \(Q_c = 3.47\). NOT at equilibrium. Because \(Q_c > K_c\), the reaction proceeds in the reverse direction

13.6 (a) \([\text{NH}_3] = 6.2 \times 10^{-4} \text{ mol L}^{-1}\)
(b) \([\text{NH}_3] = 1.8 \times 10^{-2} \text{ mol L}^{-1}\)
The cadmium solution has a higher ammonia concentration

13.7 (a) \([\text{C}_6\text{H}_{10}l_2] = 0.015 \text{ mol L}^{-1}\)
\([\text{C}_6\text{H}_{10}] = 0.035 \text{ mol L}^{-1}\)
(b) \(K = 0.082\)

13.10 \([\text{H}_2] = [\text{l}_2] = 1.54 \times 10^{-3} \text{ mol L}^{-1}\)
\([\text{HI}] = 8.92 \times 10^{-3} \text{ mol L}^{-1}\)
13.11 (b) \(K^2 = K_1^2 \)

13.13 (a) \(K_2 = (K_2)^{1/2} = (2.5 \times 10^{-29})^{1/2} = 6.3 \times 10^{-58} \)

(b) \(K_3 = (K_2)^{-1} = (6.3 \times 10^{-58})^{-1} = 1.6 \times 10^{57} \)

13.14 \(K_4 = K_1 \times (K_2)^{-2} = 8.12 \times (0.771)^{-2} = 13.7 \)

13.15 \([\text{butane}] = 0.77 \text{ mol L}^{-1}\)

\([\text{isobutane}] = 0.93 \text{ mol L}^{-1}\)

13.16 (a) When extra \(\text{H}_2 \) is added to an equilibrium mixture, the mixture is shifted out of equilibrium by the increase in \(\text{H}_2 \) concentration. There is net forward reaction until a new equilibrium is attained. Some, but not all, of the additional \(\text{H}_2 \) is consumed. The concentration of \(\text{N}_2 \) decreases, since it is a reactant, while the concentration of product \(\text{NH}_3 \) increases.

When extra \(\text{NH}_3 \) is added, net reverse reaction follows consuming some – but not all – of the added ammonia. The final equilibrium mixture has a higher concentration of both hydrogen and nitrogen (reactants) and a higher concentration of ammonia than the original equilibrium mixture.

(b) When the volume of the system is increased, all concentrations are decreased by the same factor. Since there are a different number of moles of reactant and product gases, this will change the value of the reaction quotient, shifting it away from its equilibrium value. In this case, there are more reactant gases than product gases, and the reaction quotient gets bigger. This causes the reaction to proceed in the reverse direction (the reaction quotient must decrease to revert to its equilibrium value), generating a net increase in moles of gas. The reaction proceeds in the direction which counters the decrease in total gas concentration caused by the change in volume.
(a) The equilibrium concentration of NOCl decreases if the temperature of the system is increased.

\[
2 \text{NOCl}(g) \rightleftharpoons 2 \text{NO}(g) + \text{Cl}_2(g) \quad \Delta H = 77.1 \text{ kJ mol}^{-1}
\]

(i) Initially, the mixture is at equilibrium. So, \(Q = K \). When temperature increases, the equilibrium constant generally changes. For an endothermic reaction such as this, the equilibrium constant increases. Now, \(Q < K' \) where \(K' \) is the new equilibrium constant. \(Q \) has not changed – at least at first. However, because \(Q \) is less than \(K' \), the reaction must proceed in the forward direction to return to equilibrium – i.e. increasing \(Q \) up to \(K' \). This direction consumes reactant – i.e. the concentration of NOCl decreases.

(ii) The reaction proceeds in the forward – endothermic – direction after the temperature is increased. The endothermic direction is the direction that consumes heat and lowers temperature – i.e. countering the increase in temperature in accord with Le Chatelier’s principle.

(b) The equilibrium concentration of SO₃ decreases if the temperature is increased?

\[
2 \text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2 \text{SO}_3(g) \quad \Delta H = -198 \text{ kJ mol}^{-1}
\]

(i) Initially, the mixture is at equilibrium. So, \(Q = K \). For an exothermic reaction such as this, the equilibrium constant decreases. Now, \(Q > K' \) where \(K' \) is the new equilibrium constant. To return to equilibrium, \(Q \) must decrease – i.e. the reaction proceeds in the reverse direction to return to equilibrium – i.e. decreasing \(Q \) down to \(K' \).

(ii) The reaction proceeds in the reverse – endothermic – direction after the temperature is increased. The endothermic direction is the direction that consumes heat and lowers temperature – i.e. countering the increase in temperature in accord with Le Chatelier’s principle.

Chapter 14

14.1 (a) \(\text{HCOOH(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{HCOO}^-\text{(aq)} + \text{H}_3\text{O}^+\text{(aq)} \)

acid base conj. base conj. acid

(b) \(\text{NH}_3\text{(aq)} + \text{H}_2\text{S(aq)} \rightleftharpoons \text{NH}_4^+\text{(aq)} + \text{HS}^-\text{(aq)} \)

base acid conj. acid conj. base

(c) \(\text{HSO}_4^-\text{(aq)} + \text{OH}^-\text{(aq)} \rightleftharpoons \text{SO}_4^{2-}\text{(aq)} + \text{H}_2\text{O(l)} \)

acid base conj. base conj. acid

14.3 \(\text{HC}_2\text{O}_4^-\text{(aq)} \) acting as a Brønsted-Lowry acid:

\(\text{HC}_2\text{O}_4^-\text{(aq)} + \text{OH}^-\text{(aq)} \rightleftharpoons \text{C}_2\text{O}_4^{2-}\text{(aq)} + \text{H}_2\text{O(l)} \)

\(\text{HC}_2\text{O}_4^-\text{(aq)} \) acting as a Brønsted-Lowry base:

\(\text{HC}_2\text{O}_4^-\text{(aq)} + \text{H}_3\text{O}^+\text{(aq)} \rightleftharpoons \text{H}_2\text{C}_2\text{O}_4\text{(aq)} + \text{H}_2\text{O(l)} \)

14.5 \[
\text{[H}_3\text{O}^+\text{]} = 4.0 \times 10^{-3} \text{ mol L}^{-1}
\]

\[
\text{[OH}^-\text{]} = 2.5 \times 10^{-12} \text{ mol L}^{-1}
\]
14.7 (a) $pOH = 2.9; \, pH=11.1$
(b) $[H_3O^+] = 4.79 \times 10^{-5} \text{ mol L}^{-1}; \, [OH^-] = 2.09 \times 10^{-10} \text{ mol L}^{-1}$
(c) $pOH = 3.54; \, [OH^-] = 2.88 \times 10^{-4} \text{ mol L}^{-1}$

14.9 (a) $pK_a = 4.2$
(b) aquated chloroacetic acid is a stronger acid than aquated benzoic acid

14.10 It fits between benzoic and acetic acids in Table 14.5.

14.12 $K_b = 7.1 \times 10^{-11}$
It fits between dihydrogenphosphate and fluoride in Table 14.5.

14.13 (a) An aqueous solution of KBr has a pH of 7.
(b) An aqueous solution of NH$_4$NO$_3$ has a pH < 7
(c) An aqueous solution of AlCl$_3$ has a pH < 7
(d) An aqueous solution of Na$_2$HPO$_4$ has pH > 7

14.15 (a) The H attached to N has the greatest concentration of positive charge. As such, this is the most acidic hydrogen atom.
(b) The unprotonated ring nitrogen has the greatest concentration of negative charge. It is the most basic nitrogen atom in imidazole.

14.16 CO a Lewis base.

14.17 (a)

(b)

Lewis Base
\[\text{Br}^- \]
Lewis Base

(d)

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{B} \\
\text{H} \\
\text{H} \\
\text{C} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\end{array}
\]
Lewis Acid

(e)

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{Cl}^-
\end{array}
\]
Lewis base, through Cl atoms

(f)

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{P} \\
\text{H} \\
\text{H} \\
\end{array}
\]
Lewis Base

14.19 \(K_a = 6.87 \times 10^{-5} \)

14.22 \[[\text{CH}_3\text{COO}^-] = [\text{H}_3\text{O}^+] = 0.0013 \text{ mol L}^{-1} \]
\[[\text{CH}_3\text{COOH}] = 0.0987 \text{ mol L}^{-1} \]
\(\text{pH} = 2.89 \)
\(\% \text{ acetic acid ionized} = 1.3 \% \)

14.24 The results shown in Table 14.7 are correct.

14.25 The results shown in Table 14.8 are correct.
14.27 (a) 0.30 mol L\(^{-1}\) aqueous solution of formic acid
pH = 2.14; % ionisation = 2.4%

0.10 mol L\(^{-1}\) aqueous solution of formic acid
pH = 3.27; % ionisation = 0.18%

(b) 0.18%

14.28 \([\text{HOCl}] = [\text{OH}^-] = 6.6 \times 10^{-6} \text{ mol L}^{-1}\)
pH = 8.82

14.30 \([\text{oxalate}^\cdot] = [\text{H}_2\text{O}^+] = 0.053 \text{ mol L}^{-1}\)
pH = 1.28

14.31 (a) According to increasing acidity (i.e. decreasing pH) we have
C < A < B
(b) according to amount of NaOH that can be consumed, we have
B (0.001 mol L\(^{-1}\)) < A (0.005 mol L\(^{-1}\)) < C (0.006 mol L\(^{-1}\))

14.34 (a) 2.88 \times 10^3
(b) 2.88
(c) 2.88 \times 10^3

14.35 (a) At pH 6.0
(i) 1.33 \times 10^4
(ii) 16
(iii) 2.78 \times 10^6
At pH = 6.0, the dominant species is H\(_2\)PO\(_4^-\)

(b) At pH = 9.0
(i) 1.33 \times 10^7
(ii) 1.6 \times 10^2
(iii) 2.78 \times 10^3
At pH = 9.0, the dominant species is HPO\(_4^{2-}\)
(a) phenylalanine

\[
\frac{[H_2\text{Phe}^+]}{[\text{HPhe}]} = \frac{[H_3\text{O}^+]}{K_{a1}} = \frac{10^{-7.40}}{10^{-1.83}} = 10^{-5.57} = 2.7 \times 10^{-6}
\]

\[
\frac{[\text{HPhe}]}{[\text{Phe}^-]} = \frac{[H_3\text{O}^+]}{K_{a2}} = \frac{10^{-7.40}}{10^{-9.13}} = 10^{1.73} = 54
\]

The dominant species at pH = 7.40 is HPhe.

(b) glutamic acid

\[
\frac{[H_2\text{Glu}^+]}{[\text{H}_2\text{Glu}]} = \frac{[H_3\text{O}^+]}{K_{a1}} = \frac{10^{-7.40}}{10^{-2.19}} = 10^{-5.21} = 6.2 \times 10^{-6}
\]

\[
\frac{[\text{H}_2\text{Glu}]}{[\text{HGlu}^-]} = \frac{[H_3\text{O}^+]}{K_{a2}} = \frac{10^{-7.40}}{10^{-4.25}} = 10^{-3.15} = 7.1 \times 10^{-4}
\]

\[
\frac{[\text{HGlu}^-]}{[\text{Glu}^{2-}]} = \frac{[H_3\text{O}^+]}{K_{a3}} = \frac{10^{-7.40}}{10^{-9.67}} = 10^{2.27} = 190
\]

The dominant species at pH = 7.40 is HGlu^-
(c) lysine

\[
\frac{[H_3\text{Lys}^{2+}]}{[H_2\text{Lys}^+]} = \frac{[H_3\text{O}^+]}{K_{a1}} = \frac{10^{-7.40}}{10^{-2.18}} = 10^{-5.22} = 6.0 \times 10^{-6}
\]

\[
\frac{[H_3\text{Lys}^+]}{[\text{HLys}]} = \frac{[H_2\text{O}^+]}{K_{a2}} = \frac{10^{-7.40}}{10^{-8.95}} = 10^{1.55} = 35
\]

\[
\frac{[\text{HLys}]}{[\text{Lys}^-]} = \frac{[H_3\text{O}^+]}{K_{a3}} = \frac{10^{-7.40}}{10^{-10.55}} = 10^{3.13} = 1350
\]

The dominant species at pH = 7.40 is $H_2\text{Lys}^+$

14.40 pH = 4.13

14.42 (b) NH₃ and NH₄Cl would make a buffer solution near pH = 9

14.43 If we prepare a (not too dilute) solution with a 2.0 to 1 ratio (on a moles basis) of Na₂HPO₄(s) to NaH₂PO₄(s), it will function as a buffer solution with pH = 7.5.

14.45 (a) pH = 3.89
(b) pH = 3.86

14.46 (a) (i) pH = 10.02
(ii) ΔpH = 10.26 − 10.02 = 0.24
(b) (i) 11.02
(ii) ΔpH = 11.30 − 11.02 = 0.28

14.47 concentration of the acetic acid in vinegar sample = 1.08 mol L⁻¹
mass of acetic acid in vinegar sample = 1.62 g

14.49 0.119 mol L⁻¹

14.51 (a) 4.47
(b) 8.72

14.52 (a) 4.19
(b) 6.38
(c) 9.19
(d) 10.32
(e) 11.13

14.53 8.77
15.1 (a)
\[\text{AgI(s)} \rightleftharpoons \text{Ag}^+(aq) + I^-(aq) \]
\[Q = [\text{Ag}^+][I^-] = K_{sp} = 1.5 \times 10^{-16} \text{ at equilibrium} \]

(b)
\[\text{BaF}_2(s) \rightleftharpoons \text{Ba}^{2+}(aq) + 2 \text{F}^-(aq) \]
\[Q = [\text{Ba}^{2+}][\text{F}^-]^2 = K_{sp} = 1.7 \times 10^{-6} \text{ at equilibrium} \]

(c)
\[\text{Ag}_2\text{CO}_3(s) \rightleftharpoons 2 \text{Ag}^+(aq) + \text{CO}_3^{2-}(aq) \]
\[Q = [\text{Ag}^+]^2[\text{CO}_3^{2-}] = K_{sp} = 8.1 \times 10^{-12} \text{ at equilibrium} \]

15.4 \[K_{sp} = 1.9 \times 10^{-7} \]

15.6 (a) \[1.3 \times 10^{-2} \text{ mol L}^{-1} \]
(b) \[9.6 \times 10^{-3} \text{ g L}^{-1} \]

15.8 (a) \text{AgCl}
(b) \text{Ca(OH)}_2
(c) \text{Ca(OH)}_2

15.10 The solubility of \text{Ag}_3\text{PO}_4 \text{ is larger than that predicted using Ksp of the salt because the phosphate ion, PO}_4^{3-}, reacts with water to form HPO}_4^{2-} (\text{H}_2\text{PO}_4 \text{ and H}_3\text{PO}_4 upon further reaction with water). The concentration of PO}_4^{3-} is consequently significantly reduced, and the reaction quotient for dissolution of \text{Ag}_3\text{PO}_4 remains less than the solubility product for larger initial concentrations of \text{Ag}_3\text{PO}_4 than predicted using \text{Ksp}.

15.13 (a) \[1.0 \times 10^{-5} \text{ mol L}^{-1} \]
(b) \[1.1 \times 10^{-8} \text{ mol L}^{-1} \]

15.15 (a) \text{PbS(s)}
(b) \text{Ag}_2\text{CO}_3(s)
(c) \text{Al(OH)}_3(s)

15.16 \[Q = 5.3 \times 10^{-9} < K_{sp} = 9.8 \times 10^{-9} \]
The solution is not saturated. More \text{PbI}_2 can dissolve.

15.19 \[Q = 6.3 \times 10^{-8} < K_{sp} = 3.4 \times 10^{-7} \]
The mixture is not saturated. \text{SrSO}_4(s) will not precipitate.

15.20 \[[I^-] = 4.4 \times 10^9 \text{ mol L}^{-1} \]
\[[\text{Pb}^{2+}] = 4.4 \times 10^{-3} \text{ mol L}^{-1} \]
15.22 \[[\text{OH}^-] = 5.3 \times 10^{-6} \text{ mol L}^{-1} \]

15.24 \[K_{\text{net}} = 1.1 \times 10^{-6} \]

15.25 At pH = 1, the cyanide appears only as hydrogen cyanide, HCN(aq). Silver appears only as Ag⁺(aq). As pH increases past \(pK_a = -\log_{10}(3.5 \times 10^{-4}) = 3.5 \), the cyanide ion, CN⁻, concentration increases. Depending on the relative amounts of cyanide and silver, some or all of the cyanide complexes silver – the Ag⁺(aq) concentration decreases and the [Ag(CN)₂]⁻ increases.

The concentrations remain constant for pH from about 5 (i.e. when very little hydrogen cyanide remains) all the way to 13.

Chapter 16

16.2
(a) +3
(b) +6
(c) +4
(d) +5

16.4 CH₃CH₂OH is oxidized. CH₃CH₂OH is the reducing agent. Cr₂O₇²⁻ is reduced. Cr₂O₇²⁻ is the oxidizing agent.

16.6 A silver electrode immersed in an aqueous solution of AgNO₃ provides the cathode. A nickel electrode immersed in an Ni²⁺ solution provides the anode. The overall cell reaction is: \(2\text{Ag}^+(aq) + \text{Ni}(s) \rightarrow 2\text{Ag}(s) + \text{Ni}^{2+}(aq) \)

Electrons flow from the Ni(s) to the Ag(s). NO₃⁻ in the salt bridge flows towards the anode compartment and Na⁺ in the salt bridge flows toward the cathode compartment.
16.7

(a) \(E^0 [\text{Ni}^{2+}(aq) | \text{Ni(s)}] = -0.25 \text{ V} \)

(b) \(E^0 [\text{Cl}_2(g) | \text{Cl}^- (aq) | \text{Pt(s)}] = 1.36 \text{ V} \)

16.8

(a) \(E^0 [\text{Ni}^{2+}(aq) | \text{Ni(s)}] = -0.25 \text{ V} \)

(b) \(E^0 [\text{Cl}_2(g) | \text{Cl}^- (aq) | \text{Pt(s)}] = 1.36 \text{ V} \)

16.9

See above – Exercise 16.8(b).

16.13

\[
\begin{align*}
\text{Zn(s)} & \rightarrow \text{Zn}^{2+}(aq) + 2 \text{ e}^- & \text{at the anode} \\
2 \times (\text{Ag}^+(aq) + \text{e}^- \rightarrow \text{Ag(s)}) & \text{ at the cathode} \\
\text{Zn(s)} + 2 \text{ Ag}^+(aq) & \rightarrow \text{Zn}^{2+}(aq) + 2 \text{ Ag(s)}
\end{align*}
\]

\(E^\circ_{\text{cell}} = 1.56 \text{ V} \)

16.14

(a) \(E^\circ_{\text{cell}} = -1.298 \text{ V} \) (cell reaction is not written in the spontaneous direction)

(b) \(E^\circ_{\text{cell}} = -0.51 \text{ V} \) (cell reaction is not written in the spontaneous direction)

(c) \(E^\circ_{\text{cell}} = -1.023 \text{ V} \) (cell reaction is not written in the spontaneous direction)

(d) \(E^\circ_{\text{cell}} = 0.028 \text{ V} \) (cell reaction is written in the spontaneous direction)

16.17

(a) Aluminum
(b) Aluminum and zinc
(c) \(\text{Fe}^{2+}(aq) + \text{Sn}(s) \rightarrow \text{Fe}(s) + \text{Sn}^{2+}(aq) \). This is NOT the direction of spontaneous reaction.
(d) \(\text{Zn}^{2+}(aq) + \text{Sn}(s) \rightarrow \text{Zn}(s) + \text{Sn}^{2+}(aq) \). This is NOT the direction of spontaneous reaction.

16.20 \(E_{\text{cell}}^{\circ} = +1.24 \text{ V} \)

16.22 0.041 mol L\(^{-1}\)

16.23
(a) At pH = 0, \(E_{\text{cell}} = +1.51 \text{ V} \)
(b) At pH = 5.0, \(E_{\text{cell}} = +1.04 \text{ V} \)
The cell potential is greater at pH = 0. This means permanganate is a stronger oxidizing agent under acidic conditions.

16.25 \(K = 1.2 \times 10^{-19} \)

16.27 \(\begin{align*} 2 \text{H}_2\text{O}(l) + 2 \text{e}^- & \rightarrow \text{H}_2(g) + 2 \text{OH}^- (aq) \quad \text{(Cathode reaction)} \\ 4 \text{OH}^- (aq) & \rightarrow \text{O}_2(g) + 2 \text{H}_2\text{O}(l) + 4 \text{e}^- \quad \text{(Anode reaction)} \end{align*} \)
\(E_{\text{cell}}^{\circ} = -1.23 \text{ V} \)

16.28 The brass fittings provide cathodes where oxygen is reduced to water. The steel provides the anode where iron is oxidized to \(\text{Fe}^{2+} \). Of course, the steel can provide its own cathode and can corrode without brass fittings. However, because copper (the principal component of brass) is a more noble metal than iron, when it is in contact with iron there is a slight polarization at the junction, with iron becoming slightly positively charged. This makes the oxidation process at the surface of iron more favorable. At the same time, the slight negative charge on the brass makes the reduction of oxygen more favorable.
The rate of corrosion varies from city to city because it depends upon the ionic strength – the total concentration of ions – of the city water. Ions in the water carry current from the anode to cathode – to complete the circuit. The conductivity of the water increases with ion concentration.

16.29 The corrosion of iron requires water to carry the current that completes the circuit and to provide the aqueous environment of the product \(\text{Fe}^{2+} \) ions. It also requires oxygen from the air – the reactant at the cathode. These requirements are met best at the air – water - pier interface. Corrosion below the surface can take place due to dissolved oxygen, but the concentration is less than the oxygen concentration in air. Corrosion above the surface occurs when the steel gets wet, through water splashing onto it or when it rains. This water is not always available.
16.30 (i) Tin impedes corrosion of iron by coating it, preventing oxygen from contacting the iron. If the tin coating gets scratched, the iron will corrode quickly at the scratch because the more noble metal tin provides a preferred cathode for reduction of oxygen.

(ii) Zinc impedes corrosion of iron by providing a “sacrificial anode”. Because zinc is a less noble metal, it provides a preferred anode. The zinc is oxidized, consuming the oxygen, in preference to the oxidation of iron. Scratching the zinc coating will not impact its ability to protect the iron.

(iii) Paint impedes corrosion simply by providing a coating, keeping the oxygen away from the iron. If it is scratched, the iron will corrode at the scratch, but only at its normal rate of corrosion. The non-conducting paint does not provide an electrode for corrosion.

Chapter 17

17.1 The change in entropy for a reversible process (i.e. add the heat very slowly) is just heat flow into the system divided by temperature. Therefore, the entropy of the water and hexane change by the same amount – it depends only on the temperature of the system and the amount of heat added.

\[\Delta S = \frac{q}{T} = \frac{10^6 \text{ J}}{323.15 \text{ K}} = 3095 \text{ J/K}, \text{ for both the water and hexane.} \]

17.3 121 J/K

17.5 (a) 1 mol of O₃(g)
(b) 1 mol of SnCl₄(g)
(c) 3 mol of O₂(g)

17.8 (a) +160.59 JK⁻¹
(b) -198.76 JK⁻¹

17.10 \(\Delta S^\circ_{\text{sys}} = -134.23 \text{ JK}^{-1} \)
\(\Delta H^\circ_{\text{sys}} = -657.01 \text{ kJ} \)
\(\Delta S^\circ_{\text{univ}} = +2071 \text{ JK}^{-1} \)
Since the change in entropy for the universe upon forward reaction is positive, the reaction is spontaneous.

17.12 (a) Type 2
(b) Type 3
(c) Type 1
(d) Type 2

17.14 \(\Delta_r S^\circ = -198.76 \text{ JK}^{-1} \)
\(\Delta_r H^\circ = -91.8 \text{ kJ} \)
\(\Delta_r G^\circ = -32.6 \text{ kJ} \)
17.15 (a) \[\frac{1}{2} \text{N}_2(\text{g}) + \frac{3}{2} \text{H}_2(\text{g}) \rightarrow \text{NH}_3(\text{g}) \]
(b) \[2 \text{Fe}(\text{s}) + \frac{3}{2} \text{O}_2(\text{g}) \rightarrow \text{Fe}_2\text{O}_3(\text{s}) \]
(c) \[3 \text{C}(\text{s}) + 3 \text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow \text{CH}_3\text{CH}_2\text{COOH}(\text{l}) \]
(d) Ni(s) is the element in its standard state. Its \(\Delta_f G^\circ \) = 0.

17.17 \(\Delta_r G^\circ \) = -70.87 kJ

17.18 \(\Delta_r G^\circ \) = -142.12 kJ

The reaction is spontaneous in the forward direction

17.19 \(T = 838.7 \text{ K} \)

17.21 (a) \(\Delta_r S^\circ < 0. \Delta_r G^\circ \) increases with increasing \(T \).
(b) \(\Delta_r S^\circ > 0. \Delta_r G^\circ \) decreases with increasing \(T \).
(c) \(\Delta_r S^\circ < 0. \Delta_r G^\circ \) increases with increasing \(T \).
(d) \(\Delta_r S^\circ > 0. \Delta_r G^\circ \) decreases with increasing \(T \).

17.22 \(\Delta_r G^\circ \) = -1.13 kJ

17.25 \(\Delta_r G^\circ \) = +120.023 kJ

\(K = 9.18 \times 10^{-22} \)

17.26 -41 kJ

17.27 + 147 kJ. The reverse reaction is spontaneous.

17.28 (a) \(E^\circ = 0.236 \text{ V} \)

\(\Delta_r G^\circ = -45.5 \text{ kJ} \)

\(K = 9.46 \times 10^7 \)

(b) \(E^\circ = -0.531 \text{ V} \)

\(\Delta_r G^\circ = -102 \text{ kJ} \)

\(K = 7.58 \times 10^{17} \)

17.30 (a) \(\Delta_r G^\circ = 141.73 \text{ kJ} \)
(b) \(1.43 \times 10^{-25} \)
(c) \(6.67 \times 10^{-5} \)

17.32 (a) \(p_{40^\circ \text{C}} = 1.37 \times 10^{-3} \text{ bar} \)
(b) \(p_{100^\circ \text{C}} = 6.20 \times 10^{-7} \text{ bar} \)
(c) \(62.5 \text{ kJ} \)
Chapter 18

18.2 For every 2 moles of NOCl consumed, there are 2 moles of NO and one mole of Cl₂ produced. The relative rate of appearance of Cl₂ is ½ the rate of appearance of NO which equals the rate of disappearance of NOCl.

18.3 In the first two hours: 0.0085 mol L⁻¹ h⁻¹
In the last two hours: 0.002 mol L⁻¹ h⁻¹
The instantaneous rate of decay at t = 4.0 h: 0.0044 mol L⁻¹ h⁻¹

18.4 (a) Rate = k [NO₂][O₃]
(b) The rate triples.
(c) The rate is halved.

18.7 Rate = k [NO]²[O₂]
k = 7100 mol⁻² L² s⁻¹

18.9 0.0035 mol L⁻¹

18.11 0.00217 mol L⁻¹

18.13 The plot of ln([N₂O₅]) versus time gives a straight line. The reaction is first order.

18.15 (a) t₁/₂ of ²⁴¹Am = 430 years
t₁/₂ of ¹²⁵I = 63 years
(b) ¹²⁵I
(c) 1.57 x 10¹⁵ atoms

18.17 57.2 kJmol⁻¹

18.19 All three of these processes are bimolecular. The rate equation for the third step: Rate = k [N₂O][H₂]

2 NO → N₂O₂
N₂O₂ + H₂ → N₂O + H₂O
N₂O + H₂ → N₂ + H₂O
2 NO + 2H₂ → N₂ + 2H₂O

18.21 (a) 2NH₃(aq) + OCl⁻(aq) → N₂H₄(aq) + H₂O(l) + Cl⁻(aq)
(b) step 2
(c) Rate = k [NH₂Cl][NH₃]
(d) NH₂Cl, N₂H₅⁺ and OH⁻
18.22 (a) Rate = $k [CH_3(CH_2)_5CHBrCH_3][OH^-]$
(b) The rate of reaction will double.
(c) The rate of reaction will double.
(d)
\[\text{[Chemical structure diagram]}\]
(e) (R)-octan-2-ol

18.23 (a) The rate of substitution will double
(b) The rate of substitution will not change
(c)
\[\text{[Chemical structure diagram]}\]
(d) Whether or not inversion takes place is irrelevant here because the product is the same in both cases – due to symmetry.
(e) The proportion of this reaction that proceeds by the S_N2 mechanism is negligible because the rate of the S_N1 mechanism is enhanced by the relatively stable carbocation intermediate, and because the rate of the S_N2 mechanism is reduced by the presence of the three methyl groups about the carbon center. The portion of collisions between iodide and tert-butyl chloride which can lead to reaction is much smaller than the value for methyl chloride (for example). The three methyl groups present an obstacle limiting the rate of the S_N2 reaction. The S_N1 mechanism presents no such obstacle – the iodide reacts with a reactive planar intermediate.
19.2
(a)
\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2 \\
& \quad \text{CH}_3
\end{align*}
\]

(b)
\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{CH}_2 \\
& \quad \text{CH}_3
\end{align*}
\]

(c)
\[
\begin{align*}
\text{H}_2 & \quad \text{CH}_2 \\
& \quad \text{CH}_3
\end{align*}
\]

(d)
\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{H}_3 & \quad \text{C} \\
\text{CH}_3 & \quad \text{CH}_3 \\
& \quad \text{CH}_3
\end{align*}
\]

19.4
(c)
\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{H}
\end{align*}
\]

\text{trans} \quad \text{cis}

(d)
\[
\begin{align*}
\text{H}_3 & \quad \text{C} \\
\text{H} & \quad \text{CH}_3 \\
\text{H} & \quad \text{H} \\
\text{H}_3 & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{CH}_3
\end{align*}
\]

\text{trans} \quad \text{cis}
19.6 (a) –Br
(b) –Br
(c) –CH₂CH₃
(d) –OH
(e) –CH₂OH
(f) –CH=O

19.7 (a)

(b)
19.8 This is the Z isomer.

19.9 The two downfield lines, at about 139 and 113 ppm, are the two alkene carbon peaks.

19.10

19.11 (a) substitution
(b) elimination
(c) addition

19.13 (a)

(b)

(c)

(d)

R MgBr
19.14 (a) NH_4^+
Ammonium is an electrophile. It is attracted to concentrations of negative charge, and will donate a proton to proton acceptors – i.e. nucleophiles.

(b) CN^-
Cyanide is a nucleophile. It is attracted to concentrations of positive charge (i.e. regions of depleted electron density) such as acidic protons and carbonyl carbons.

(c) Br^-
Bromide is a nucleophile. It is attracted to concentrations of positive charge (i.e. regions of depleted electron density).

(d) CH_3NH_2
The amine N atom is a nucleophile. It is attracted to concentrations of positive charge (i.e. regions of depleted electron density).

(e) $\text{H}^–\text{C}≡\text{C}–\text{H}$
Acetylene is a nucleophile. It has a relatively loosely held cloud of π electrons which electrophiles are attracted to – and vice versa.

19.15 BF_3 is electron deficient at the low-electronegativity boron atom. In the Lewis structure of BF_3, the boron atom has only 6 electrons in its valence shell. BF_3 is electrophilic at the boron center.

19.16

19.17 (a) $\text{CH}_3\text{CH}_2\text{CHClCH}_3$
(b) $(\text{CH}_3)_2\text{CIC}_2\text{CH}_2\text{CH}_3$
(c) chlorocyclohexane
19.18
(a) Bromocyclopentane can be prepared from cyclopentene and HBr.
(b) 3-Bromohexane can be prepared from hex-2-ene and HBr.
(c) 1-Iodo-1-isopropylcyclohexane can be prepared from dimethyldimethylenecyclohexane,

\[\text{CH}_3 \quad \text{CH}_3 \]

(d)

\[\text{CH}_3 \quad \text{H} \quad \text{HBr} \]

19.19
(a)

\[\text{Cl} \quad \text{H} \quad \begin{array}{c} \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \end{array} \]

\[\rightarrow \]

\[\begin{array}{c} \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \end{array} \quad \text{Cl} \quad \text{H} \]

\[\rightarrow \]

\[\begin{array}{c} \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \end{array} \quad \text{Cl} \]

(b)

\[\text{I} \quad \text{H} \quad \begin{array}{c} \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \end{array} \]

\[\rightarrow \]

\[\begin{array}{c} \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \\ \text{H}_3 \text{C} \end{array} \quad \text{I} \quad \text{CH}_3 \]

19.20

1,2-dibromobutane

1,4-dibromobutane
19.21 (a) Addition of water to 3-methylhex-3-ene gives 3-methylhexan-3-ol,

(b) Addition of water to 1-methylcyclopentene gives 1-methylcyclopentanol

(c) Addition of water to 2,5-dimethylhept-2-ene gives 2,5-dimethylheptan-2-ol

19.22 (a) Butan-2-ol can be made by addition of water to but-1-ene or but-2-ene.
(b) 3-Methylpentan-3-ol can be made by addition of water to 3-methylpent-2-ene or 2-ethylbut-1-ene.
(c) 1,2-Dimethylcyclohexanol can be made by addition of water to 1,2-dimethylcyclohexene or 1,6-dimethylcyclohexene.

19.23 If the second bromine added to the other carbon – the one on the left, then the enantiomeric product would be formed. By symmetry, this pathway is just as likely as the one shown in Figure 19.30 of the text. The two enantiomeric products would be formed in equal amounts.
The two enantiomers of 1,2-dibromo-1,2-dimethylcyclohexane are expected upon bromination of 1,2-dimethylcyclohexene.

19.25 See Exercise 19.24 above

19.26 (a) Catalytic hydrogenation of \((\text{CH}_3)_2\text{C}=\text{CHCH}_3\) produces \((\text{CH}_3)_2\text{CHCH}_2\text{CH}_3\).
(b) Catalytic hydrogenation of 3,3-dimethylcyclopentene gives 3,3-dimethylcyclopentane.

19.27 (a)

\[
\text{KMnO}_4(\text{aq}) + \text{H}_3\text{O}^+(\text{aq}) \rightarrow \text{CH}_3\text{CH}_2\text{CO}_2\text{H}
\]

(b)

\[
\text{KMnO}_4(\text{aq}) + \text{OH}^-(\text{aq}) \rightarrow \text{CH}_3\text{CH}_{2}\text{CH}_3\text{CH}_2\text{CH}_3
\]

19.28 (a) \((\text{CH}_3)_2\text{C}=\text{O} + \text{CO}_2\) is the product upon treating \((\text{CH}_3)_2\text{C}=\text{CH}_2\) with acidic \text{KMnO}_4.
(b) 2 equiv \(\text{CH}_3\text{CH}_2\text{CO}_2\text{H}\) is the product upon treating one equivalent of\(\text{CH}_3\text{CH}_2\text{CH}=\text{CHCH}_2\text{CH}_3\) with acidic \text{KMnO}_4.
19.29
(a) 6-methylhept-3-yne
(b) 3,3-dimethylbut-1-yne
(c) 5-methylhex-2-yne
(d) hept-2-en-5-yne

19.30
The peak just above 3300 cm\(^{-1}\) looks like an alkyne C–H stretch, while the peak just above 2100 cm\(^{-1}\) looks like an asymmetric alkyne C≡C stretch. There also appear to be alkyl C–H stretch peaks just below 3000 cm\(^{-1}\). The compound likely has alkyl H’s in addition to the alkynyl H.

19.31
The two downfield peaks, ~68 and ~85 ppm, are characteristic of an alkyne. Alkene \(^{13}\)C chemical shifts occur further downfield.

19.32
The unknown compound is either CH\(_3\)CH\(_2\)CH\(_2\)C≡CH or (CH\(_3\)CH\(_2\))CHC≡CH.

19.33

19.34
(a) To make 2-pentanone you could hydrate 1-pentyne, CH\(_3\)CH\(_2\)CH\(_2\)C≡CH.
(b) To make 3-hexanone you could hydrate 2-hexyne, CH\(_3\)CH\(_2\)CH\(_2\)C≡CH\(_3\).
(a) To make 5-methylhex-1-yne, \((\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{C}≡\text{CH}\) you could start with ethyne (acetylene), \(\text{HC}≡\text{CH}\), treat it with NaN\(_2\) to make sodium acetylide add to 3-methylbutyl bromide, \((\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br}\)
(b) To make 2-hexyne, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{C}≡\text{CCH}_3\) you could start with propyne, \(\text{HC}≡\text{CCH}_3\), treat it with NaN\(_2\) to make sodium propynylide add to propyl bromide, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}\)
Alternatively, you could treat pentyne, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{C}≡\text{CH}\), with NaN\(_2\) to make sodium pentynylide add to methyl bromide, \(\text{CH}_3\text{Br}\)
(c) To make 4-methylpent-2-yne, \((\text{CH}_3)_2\text{CHC}≡\text{CCH}_3\) you could start with propyne, \(\text{HC}≡\text{CCH}_3\), treat it with NaN\(_2\) to make sodium propynylide add to isopropyl bromide, \((\text{CH}_3)_2\text{CHBr}\)
Alternatively, you could treat 3-methylbut-1-yne, \((\text{CH}_3)_2\text{CHC}≡\text{CH}\), with NaN\(_2\) to make sodium 3-methylbutynylide add to methyl bromide, \(\text{CH}_3\text{Br}\)

Chapter 20

20.1 \(-236\) kJ/mol

20.2 (a) Cyclobutadiene is monocyclic, planar and fully conjugated. Cyclobutadiene is anti-aromatic.
(b) Cyclohepta-1,3,5-triene is monocyclic and planar, but not fully conjugated.
(c) Cyclopenta-1,3-diene is monocyclic and planar, but not fully conjugated.
(d) Cyclooctatetraene is monocyclic, planar and fully conjugated. Cyclobutadiene is anti-aromatic.

20.3 (a) Benzene has just one \(^{13}\text{C}\) NMR absorption peak.

(b) Chlorobenzene has four \(^{13}\text{C}\) NMR absorption peaks.
(c) Naphthalene has three 13C NMR absorption peaks.

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{naphthalene.png}}
\end{array}
\]

(d) 1,3-dichlorobenzene has four 13C NMR absorption peaks.

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{1,3-dichlorobenzene.png}}
\end{array}
\]

20.4

(a) There is an aryl C-H stretching band with three peaks at 3100, 3070 and 3030 cm$^{-1}$. The alkyl C-H stretching band with principal peaks at 2925 and 2850 cm$^{-1}$.
(b) The out-of-plane C-H bending vibrations give rise to two peaks at 740 and 700 cm$^{-1}$.
(c) The in-plane C-H bending vibrations produce peaks at 1090 and 1030 cm$^{-1}$. The aryl C-C stretches produce a band with principal peaks at 1610, 1510 and 1470 cm$^{-1}$.

20.5 Furan has 6 electrons in its π system. It is aromatic, with 1H NMR shifts are at 6.4 and 7.4 ppm.

20.6 (a) Aromatic
(b) Anti-aromatic
(c) Aromatic

20.8 (a) meta
(b) para
(c) ortho

20.9 (a) 1-bromo-3-chlorobenzene, or m-bromochlorobenzene
(b) 2-methylpropylbenzene, or 2-methyl-1-phenylpropane
(c) 1-amino-4-bromobenzene, or p-aminobromobenzene or p-bromoaniline

20.10

\[
\begin{array}{c}
\text{\includegraphics[width=0.3\textwidth]{molecules.png}}
\end{array}
\]
20.11 \(\text{H}_2\text{SO}_4 \) sulfonates the benzene ring reversibly. On sulfonation, an \(\text{H}^+ \) is lost to the solvent (\(\text{H}_2\text{SO}_4 \)). On de-sulfonation, \(\text{D}^+ \) adds to the ring. Since the solvent far outnumbers the benzene, the \(\text{H}^+ \)'s are lost in a sea of \(\text{D}^+ \)'s. The benzene ends up with all \(\text{H}^+ \)'s replaced by \(\text{D}^+ \)'s.

20.12 (a) Nitrobenzene < toluene < phenol (hydroxybenzene)
(b) Benzoic acid < chlorobenzene < benzene < phenol
(c) Benzaldehyde < bromobenzene < benzene < aniline (aminobenzene)

20.13 The products of electrophilic bromination of nitrobenzene, benzoic acid, benzaldehyde, bromobenzene, chlorobenzene, benzene, toluene, phenol and aniline, respectively, are

\(\text{NO}_2^- + \text{Br}^- \rightarrow \text{O}^- \text{Br} \)

\(\text{O}^- \text{H} \)

\(\text{Br} \)

\(\text{CH}_3 \text{Br} + \text{Br} \)

\(\text{OH} \)

\(\text{NH}_2 \)
20.14 (a)

(b)

(c)

(d)

(e)
20.15 Oxidizing m-chloroethylbenzene with KMnO$_4$ produces m-chlorobenzoic acid,

\[
\text{Oxidizing tetralin with KMnO}_4\text{ produces 1,2-bezenedicarboxylic acid a.k.a. phthalic acid,}
\]

\[
\text{Oxidizing tetralin with KMnO}_4\text{ produces 1,2-bezenedicarboxylic acid a.k.a. phthalic acid,}
\]

20.16 (a) Brominate toluene using Br$_2$ + FeBr$_3$
Separate the ortho product, 2-bromo-toluene
Nitrate using nitric and sulfuric acids to obtain the 2-bromo-4-nitro and 2-bromo-6-nitro products:

\[
\text{Separate the desired 2-bromo-4-nitro product – e.g. using distillation or chromatography, or maybe even a molecular sieve.}
\]

(b) Nitrate benzene with 3 equivalents of $-\text{NO}_2$.

(c) First make aniline from benzene.
Nitrate benzene using nitric and sulfuric acids – with 1 equivalent of $-\text{NO}_2$
Reduce the nitrobenzene product using hydrogen to get aniline
Brominate the aniline with 3 equivalents of bromine to get the fully brominated product, 2,4,6-tribromoaniline
21.1 (a) 2-bromobutane
(b) 3-chloro-2-methylpentane
(c) 1-chloro-3-methylbutane
(d) 1,3-dichloro-3-methylbutane
(e) 1-bromo-4-chlorobutane
(f) 4-bromo-1-chloropentane

21.3
(a)

(b)

(c)

(d)
21.5

(a)
\[
\text{HO} \quad \xrightarrow{\text{HCl}} \quad \text{Cl}
\]

(b)
\[
\text{HO} \quad \xrightarrow{\text{PBr}_3} \quad \text{Br}
\]

(c)
\[
\text{OH} \quad \xrightarrow{\text{PBr}_3} \quad \text{Br}
\]

(d)
\[
\text{SOCl}_2 \quad \xrightarrow{\text{SOCl}_2} \quad \text{Cl}
\]
21.6
(a)
\[\text{H}_3\text{C} - \text{CH}_3 - \text{CH}_2\text{OH} \xrightarrow{\text{PBr}_3} \text{H}_3\text{C} - \text{CH}_3 - \text{CH}_2\text{Br}\]

(b)
\[\text{H}_3\text{C} - \text{CH}_2\text{OH} \xrightarrow{\text{HCl}} \text{H}_3\text{C} - \text{CH}_3\]

(c)
\[\text{H}_3\text{C} - \text{C}_\text{OH} - \text{C}_\text{OH} \xrightarrow{\text{SOCl}_2} \text{H}_3\text{C} - \text{C}_\text{Cl} - \text{C}_\text{Cl}\]

21.8
(a)
\[\text{H}_3\text{C} - \text{CH}_2\text{H}_2\text{Br} - \text{CH}_3 \xrightarrow{\text{LiI}} \text{H}_3\text{C} - \text{CH}_2\text{H}_2\text{I} - \text{CH}_3\]

(b)
\[\text{Cl} - \text{CH}_2\text{CH}_3 \xrightarrow{\text{HS}^-} \text{CH}_2\text{SH} - \text{CH}_3\]

(c)
\[\text{Br} - \text{C}_6\text{H}_5 \xrightarrow{\text{NaCN}} \text{C}_6\text{H}_5 - \text{CH} = \text{N}\]
21.9

(a) \[\text{CH}_3\text{C} - \text{Br} \xrightarrow{\text{NaOH}} \text{CH}_3\text{C} - \text{OH} \]

(b) \[\text{H}_3\text{C} - \text{Br} - \text{Br} \xrightarrow{\text{NaN}_3} \text{H}_3\text{C} - \text{N} = \text{N}^{+} \text{N}^{-} \]

21.10
(a) The rate triples.
(b) The rate increases by a factor of 4.

21.11

\[\text{NaCH}_3\text{COO} \]

(S)-2-bromohexane \quad \rightarrow \quad (R)-2-hexyl acetate

21.12

(R)-2-bromo-4-methylpentane \quad \rightarrow \quad 4-methylpentane-(S)-2-thiol

21.14
(a) CN\(^-\) (cyanide ion) reacts faster with CH\(_3\)CH\(_2\)CH\(_2\)Br
(b) Reaction of I\(^-\) with (CH\(_3\))\(_2\)CHCH\(_2\)Cl is faster.

21.15 \(\text{CH}_3\text{I} > \text{CH}_3\text{Br} > \text{CH}_3\text{F}\)

21.16
(a) No effect
(b) Halving the HBr concentration has no effect. However, doubling the tert-butyl alcohol concentration doubles the rate of reaction.
21.17

\[\text{(S)-3-methyloctan-3-ol} \xrightarrow{\text{HBr}} \text{(S)-3-bromo-3-methyloctane} + \text{(R)-3-bromo-3-methyloctane}} \]

21.18

\[\text{(S)-2-bromo-2-phenylbutane} \xrightarrow{\text{H}_2\text{O}} \text{(S)-2-phenylbutan-2-ol} + \text{(R)-2-phenylbutan-2-ol}} \]
21.19
(a)

\[
\text{elimination}
\]

(b)

\[
\text{elimination}
\]

(c)

\[
\text{elimination}
\]

21.20
(a)

\[
\text{elimination}
\]

(b)

\[
\text{elimination}
\]

21.21 Rate of the elimination reaction triples.

21.22 (a) S_n2
(b) $E2$
(c) S_n1
21.23

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{Br} & \quad \text{Mg + ether} \quad \text{CH}_3\text{CH}_2\text{MgBr} \\
\text{H}_3\text{C}\text{CH}_2\text{CH}_3 & \quad \text{Grignard reagent} \\
\text{CH}_3\text{CH}_2\text{D} & \quad \text{D}_2\text{O} \quad \text{CH}_3\text{CH}_2\text{D}
\end{align*}
\]

21.24

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{OH} & \quad \text{PBr}_3 \quad \text{CH}_3\text{CH}_2\text{Br} \\
\text{H}_3\text{C}\text{CH}_2\text{CH}_3 & \\
\text{CH}_3\text{CH}_2\text{Br} & \quad \text{Mg + ether} \quad \text{CH}_3\text{CH}_2\text{MgBr} \\
\text{H}_3\text{C}\text{CH}_2\text{CH}_3 & \\
\text{CH}_3\text{CH}_2\text{MgBr} & \quad \text{H}_2\text{O} \quad \text{CH}_3\text{CH}_2\text{CH}_3
\end{align*}
\]
22.2
(a) tertiary alcohol.
(b) contains primary and secondary alcohol functional groups.
(c) primary alcohol.
(d) secondary alcohol.
(e) phenol
(f) phenol

22.3
(a)

(b)

(c)

(d)
22.4 (a) di(2-propyl) ether a.k.a. diisopropyl ether
(b) cyclopentyl propyl ether
(c) 4-bromophenyl methyl ether
(d) ethyl 2-methyl-1-propyl ether

22.5 O–H stretch: 3320 cm\(^{-1}\) (strong, broad)
 aromatic C–H stretches: 3090, 3070 and 3010 cm\(^{-1}\) (sharp peaks).
 alkyl C–H stretches: 2950 and 2890 cm\(^{-1}\) (broad).
 C–O stretches: 1020 cm\(^{-1}\) (strong, somewhat broad).
 C–C stretches of the benzene ring: 1500 to 1370 cm\(^{-1}\) (three sharp ones)
 benzene C–H in-plane: peaks at 1080 and 1040 cm\(^{-1}\)
 benzene C–H out-of-plane bends: 730 and 700 cm\(^{-1}\)

22.6 The IR spectrum of the product should not show the strong, broad alcohol O–H peak around 3300 cm\(^{-1}\), or the strong C–O peak near 1000 cm\(^{-1}\). Instead, it should show a strong C=O stretching peak near 1750 cm\(^{-1}\).
We cannot make cyclohexyl ethyl ether by first forming sodium ethoxide, then reacting it with
cyclohexyl iodide.

22.9 bromoethane > chloroethane > 2-bromopropane > 2-chloro-2-methylpropane
22.10

(a)

(b)

22.11

(a)

(b)

(c)
22.12

(a) \[\text{OH} \quad \overset{\text{CrO}_3}{\rightarrow} \quad \text{O} \]

(b) \[\text{H}_3\text{C} - \text{CH}_2 - \text{OH} \quad \overset{\text{CrO}_3}{\rightarrow} \quad \text{H}_3\text{C} - \text{CH}_2 - \text{COOH} \]

(c) \[\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{OH} \quad \overset{\text{CrO}_3}{\rightarrow} \quad \text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{COCH}_3 \]

22.13 The same products are expected.

22.14

\[\text{SO}_3 + \text{H}_2\text{SO}_4 \quad \rightarrow \quad \text{NaOH} \quad \text{high T} \quad \rightarrow \quad \text{OH} \]

\[\text{OH} \quad \overset{\text{CH}_3\text{Cl} + \text{AlCl}_3}{\rightarrow} \quad \text{OH} + \text{OH} \text{CH}_3 \]
22.16
(a)

\[\text{H}_3\text{C} \text{OCH}_3 \xrightarrow{\text{HI}} \text{H}_3\text{C} \text{I} + \text{H}_3\text{C} \text{OH} \]

(b)

\[\text{CH}_3 \text{OCH}_3 \xrightarrow{\text{HI}} \text{CH}_3\text{OH} + \text{H}_3\text{C} \text{I} \]

(c)

\[\text{CH}_3\text{OCH}_3 \xrightarrow{\text{HI}} \text{CH}_3\text{OH} + \text{H}_3\text{C} \text{I} \]

22.17

\[\text{H}^+ \]

\[\text{H}_3\text{C} \text{OCH}_3 \xrightarrow{\text{H}^+} \text{H}_3\text{C} \text{OH} \]

\[\text{H}_3\text{C} \text{OH} \xrightarrow{\text{H}^+} \text{H}_3\text{C} \text{O}^+ \]

\[\text{H}_3\text{C} \text{O}^+ \xrightarrow{\text{H}^+} \text{H}_3\text{C} \text{OH} \]
22.18 (a) 2-butanethiol
 (b) 2,6,6-trimethylheptan-4-thiol
 (c) 3-cyclopentenethiol

22.19 (a) ethyl methyl sulfide
 (b) tert-butyl ethyl sulfide
 (c) o-methylthiophenyl methyl sulfide

22.20 To make 2-butene-1-thiol from 2-butene-1-ol:
You could treat 2-buten-1-ol with PBr₃ to make 1-bromobut-2-ene.
1-bromobut-2-ene is then treated with NaSH to make 2-butene-1-thiol.

 To make 2-butene-1-thiol from methyl but-2-enoate:
First reduce methyl but-2-enoate with LiAlH₄ to get methanol and 2-butene-1-ol.
2-butene-1-ol can then be processed as above.

23.2 (a) 2-methylpentan-3-one
 (b) 3-phenylpropanal
 (c) 2,6-octandione
 (d) trans-2-methylcyclohexanecarbaldehyde
 (e) 1,5-pentanedianal
 (f) cis-2,5-dimethylcyclohexanone

23.3
(a) ![Chemical Structure](image1)
(b) ![Chemical Structure](image2)
(c) ![Chemical Structure](image3)
(d) ![Chemical Structure](image4)
(e) ![Chemical Structure](image5)
(f) ![Chemical Structure](image6)

23.4

(a) \[\text{PCC} \]

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{OH} \\
\text{PCC} \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_3
\end{array}
\]

(b) \[\text{LiAlH}_4 \]

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CO}_2\text{H} \\
\text{LiAlH}_4 \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{H} \\
\text{PCC}
\end{array}
\]

(c) \[\text{PCC} \]

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \\
\text{KMnO}_4 \& \text{H}_3\text{O}^+ \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CO}_2\text{H} \\
\text{LiAlH}_4 \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{H} \\
\text{PCC}
\end{array}
\]

23.5

(a) \[\text{PCC} \]

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 - \text{CH}_3 \\
\text{PCC} \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 - \text{CH}_2 - \text{CH}_3
\end{array}
\]

(b) \[\text{H}_2\text{SO}_4 \& \text{HgSO}_4 \]

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_3 \\
\text{H}_2\text{SO}_4 \& \text{HgSO}_4 \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 - \text{CH}_2 - \text{CH}_3
\end{array}
\]

(c) \[\text{KMnO}_4 \& \text{H}_3\text{O}^+ \]

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \\
\text{KMnO}_4 \& \text{H}_3\text{O}^+ \\
\text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 + \text{CO}_2
\end{array}
\]
23.6

\[\text{N} \quad \text{OH} \]
\[\text{H}_3 \text{C} \quad \text{H}_3 \text{C} \]

23.7

\[\text{OH} \quad \text{O} \quad \text{CH}_3 \]

23.8

\[\text{Cl} \quad \text{H} \quad \text{OH} \quad \text{Cl} \quad \text{Cl} \quad \text{OH} \]

23.9

\[
\begin{align*}
\text{R}_1 \text{R}_2 \quad \text{H} - \text{O}^+ - \text{H} & \rightleftharpoons \text{R}_1 \text{R}_2 \quad \text{H} \\
\text{R}_1 \text{R}_2 \quad \text{O}^+ - \text{H} \quad \text{H} & \rightleftharpoons \text{R}_1 \text{R}_2 \quad \text{H} \\
\text{R}_1 \text{R}_2 \quad \text{O} - \text{H} \quad \text{H} & \rightleftharpoons \text{R}_1 \text{R}_2 \quad \text{H} \\
\end{align*}
\]

23.10

\[\text{HO} - \text{O} - \text{CH}_3 \quad \text{H}_3 \text{C} - \text{O} - \text{O} - \text{CH}_3 \]

(1 equivalent of ethanol) (2 equivalents of ethanol)

23.11
23.12

Protection Step

\[
\text{HO-CHOH} \quad \xrightarrow{\text{acid catalyzed}} \quad \text{HO-CHOCH}_3
\]

Deprotection Step

\[
\text{HO-CHOCH}_3 \quad \xrightarrow{\text{LiAlH}_4} \quad \text{HO-CHOCH}_2\text{CH}_3
\]
23.13

(a) \[\text{N} \overset{\text{C}}{\text{H}_3} \]

(b) \[\text{HO} \overset{\text{CH}_3}{\text{O}} \]

(c) \[\text{OH} \]

23.14

\[\text{H}_3\text{C} \overset{\text{CH}_3}{\text{C}} \overset{\text{CH}_3}{\text{CH}_3} + \text{H}_2\overset{\text{N}}{\text{CH}_3} \rightarrow \text{H}_3\overset{\text{N}}{\text{C}} \overset{\text{CH}_3}{\text{CH}_3} \]

23.15

(a) \[\text{HO} \overset{\text{CH}_3}{\text{CH}_3} \]

(b) \[\text{HO} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{CH}_3}{\text{CH}_3} \]

(c) \[\text{H}_3\overset{\text{C}}{\text{CH}_3} \overset{\text{CH}_3}{\text{CH}_3} \]

23.16

\[\text{H}_3\overset{\text{C}}{\text{CH}_3} + \text{HO} \overset{\text{CH}_3}{\text{CH}_3} \rightarrow \text{H}_3\overset{\text{HO}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{CH}_3} \]

76 Chemistry, First Canadian Edition
23.17

(a)

\[\text{Ag}^+ \text{(aq)} & \text{NH}_3 \text{(aq)} \]

(b)

\[\text{Ag}^+ \text{(aq)} & \text{NH}_3 \text{(aq)} \]

(c)

\[\text{Ag}^+ \text{(aq)} & \text{NH}_3 \text{(aq)} \] no reaction

Chapter 24

24.2

(a)

(b)

(c)

(d)
24.3

(a) \[\text{CH}_3 \text{COCl} \] (b) \[\text{CH}_3 \text{CONH}_2 \]

(c) \[\text{CH}_3\text{CH} \equiv \text{N} \] (d) \[\text{CH}_3\text{COOCH}_3 \]

(e) \[\text{CH}_3 \text{CONH}_2 \] (f) \[\text{C}_6\text{H}_4\text{COOCH}_3 \]

24.4
(a) a carbonyl stretch – most likely an ester or an aldehyde.
(b) C=O stretching band (there are two) of an anhydride.
(c) carboxylic acids.
(d) a ketone (unless there is also a broad O–H stretch - 2400-3300 cm$^{-1}$) C=O stretch.

24.5

(a) \[\text{CH}_3\text{COOCH}_3 \]

1735 cm$^{-1}$ - an ester C=O stretch

(b) \[\text{CH}_3\text{CONHCH}_3 \]

1650 cm$^{-1}$ - an amide C=O stretch

(c) \[\text{CH}_3\text{C} \equiv \text{C} \text{Cl} \]

1735 cm$^{-1}$ - an acid chloride C=O stretch
24.6 In 13C NMR spectroscopy, the carboxylic acid carbonyl carbon will absorb around 180-185 ppm and the ketone carbonyl range is from 180-220 ppm. Also, 4-hydroxycyclohexanone has a hydroxyl functionality and will have a C–O carbon absorption in the 50-90 ppm range. The other alkyl carbons will mostly absorb in the 10-30 ppm range – though the carbon next to the carbonyl (in both molecules) can be as far as 50 ppm downfield. In the 1H NMR spectra, the molecules are distinguished by possible splitting of the hydroxyl H peak in the case of 4-hydroxycyclohexanone, and (more importantly) by the extra downfield peak due to the methine H–C–O.

24.8

(a)

\[
\begin{align*}
\text{PhCOOH} + \text{NaOCH}_3 & \rightarrow \text{PhCOOCH}_3
\end{align*}
\]

(b)

\[
\begin{align*}
\text{H}_3\text{C} - \text{C} - \text{OH} + \text{KOH} & \rightarrow \text{H}_3\text{C} - \text{C} = \text{O}^- + \text{K}^+
\end{align*}
\]

24.9 methanol < phenol < p-nitrophenol < acetic acid < sulfuric acid

24.10 (a) CH₃CH₂CO₂H < BrCH₂CH₂CO₂H < BrCH₂CO₂H
(b) ethanol < benzoic acid < p-cyanobenzoic acid

24.11 (a) CH₃COCl > CH₃CO₂CH₃
(b) CH₃CH₂CO₂CH₃ > (CH₃)₂CHCONH₂
(c) CH₃CO₂COCH₃ > CH₃CO₂CH₃
(d) CH₃CO₂CH₃ > CH₃CHO

24.12 The fluorine substituents in CF₃CO₂CH₃ are electron withdrawing, making the carbonyl carbon more electron deficient (attracting nucleophiles) and stabilizing the four coordinate intermediate which has additional electron density due to the bonded nucleophile.
24.13

(a) \[\text{CH}_3\text{C}_2\text{H}_4\text{Cl} + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{C}_2\text{H}_4\text{OCH}_3 \]

(b) \[\text{CH}_3\text{COCl} + \text{CH}_3\text{CH}_2\text{OH} \rightarrow \text{CH}_3\text{COCH}_3 \]

(c) \[\text{CH}_3\text{COCl} + \text{cyclohexanol} \rightarrow \text{CH}_3\text{COcyclohexyl} \]

24.14

\[\text{CH}_3\text{C}_2\text{H}_4\text{NCl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{C}_2\text{H}_4\text{N}^+\text{Cl}^- \]

\[\text{CH}_3\text{C}_2\text{H}_4\text{N}^+\text{Cl}^- + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{C}_2\text{H}_4\text{NH}_3 \]

\[\text{CH}_3\text{C}_2\text{H}_4\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{C}_2\text{H}_4\text{OCH}_3 \]
24.15

(a) $\text{CH}_3\text{ClCH}_2\text{COCl} \xrightarrow{\text{NH}_3} \text{CH}_3\text{ClCH}_2\text{CONH}_2$

(b) $\text{CH}_3\text{ClCH}_2\text{COCl} \xrightarrow{\text{CH}_3\text{NH}_2} \text{CH}_3\text{ClCH}_2\text{CONHCH}_3$

(c) $\text{CH}_3\text{ClCH}_2\text{COCl} \xrightarrow{\text{CH}_3\text{NH}_2} \text{CH}_3\text{ClCH}_2\text{CONHCH}_3$

(d) $\text{CH}_3\text{ClC} = \text{NCH}_3$
24.16

![Chemical structures and reactions](image)

24.17

![Chemical structures and reactions](image)

24.18

(a) ![Chemical structures and reactions](image)

(b) ![Chemical structures and reactions](image)
24.19

(a) \[
\begin{align*}
\text{H}_3\text{C}-\text{CH}_2\text{CH}_2\text{O}-\text{CH}_3 & \quad \xrightarrow{\text{LiAlH}_4} \quad \text{H}_3\text{C}-\text{CH}_2\text{CH}_2\text{OH} + \text{H}_3\text{C}-\text{CH}_2\text{OH}
\end{align*}
\]

(b) \[
\begin{align*}
\text{Ph}-\text{O}-\text{Ph} & \quad \xrightarrow{\text{LiAlH}_4} \quad \text{Ph}-\text{OH} + \text{Ph}-\text{OH}
\end{align*}
\]

24.20

(a) \[
\begin{align*}
\text{Ph}-\text{O}-\text{CH}_3 & \quad 2\text{CH}_3\text{MgBr} \quad \xrightarrow{} \quad \text{Ph}-\text{CH}_3\text{CH}_3
\end{align*}
\]

(b) \[
\begin{align*}
\text{H}_3\text{C}-\text{O}-\text{CH}_3 & \quad 2\text{Ph}\text{MgBr} \quad \xrightarrow{} \quad \text{Ph}-\text{CH}_3\text{CHPh}
\end{align*}
\]

(c) \[
\begin{align*}
\text{H}_3\text{C}-\text{CH}-\text{CH}_{2}\text{O}-\text{CH}_3 & \quad \text{H}_3\text{C}-\text{CH}-\text{CH}_2\text{MgBr} \quad \xrightarrow{} \quad \text{H}_3\text{C}-\text{CH}-\text{CH}_2\text{OH}
\end{align*}
\]
24.21

(a) \[
\text{O} \quad \text{NH}_2 \quad \text{CH}_3
\]
\[
\text{H}_2\text{O}^{+}(\text{aq}) \quad \& \quad \text{heat}
\]
\[
\text{O} \quad \text{COOH}
\]

(b) \[
\text{O} \quad \text{COOH}
\]
\[
\text{LiAlH}_4
\]
\[
\text{O} \quad \text{OH}
\]
from (a)

(c) \[
\text{O} \quad \text{NH}_2 \quad \text{CH}_3
\]
\[
\text{LiAlH}_4
\]
\[
\text{O} \quad \text{NH} \quad \text{CH}_3
\]

24.22

24.23

(a) \(\text{CH}_3\text{CH}_2\text{CHO}\) has no acidic H’s
(b) \((\text{CH}_3)_3\text{CCOCH}_3\) is essentially non-acidic. However, the 3 H’s on the methyl next to the carbonyl are slightly acidic.
(c) The H bonded to O is acidic in acetic acid, \(\text{CH}_3\text{CO}_2\text{H}\).
(d) The methylene H’s between the two carbonyl C’s are acidic in 1,3-Cyclohexanedione.
24.24

(a)
\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{CH}_3 & -\text{H}^+ & \quad \text{H}_3\text{C} \\
\text{H} & \quad \text{C} \quad \text{H} & \quad \text{H}_3\text{C} & \quad \text{CH}_3
\end{align*}
\]

(b)
\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{CH}_3 & -\text{H}^+ & \quad \text{H}_3\text{C} \\
\text{H} & \quad \text{C} \quad \text{H} & \quad \text{H}_3\text{C} & \quad \text{CH}_3
\end{align*}
\]

(c)
\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{CH}_3 & -\text{H}^+ & \quad \text{H}_3\text{C} \\
\text{H} & \quad \text{C} \quad \text{H} & \quad \text{H}_3\text{C} & \quad \text{CH}_3
\end{align*}
\]

24.25
\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{CH}_3 & -\text{H}^+ & \quad \text{H}_3\text{C} \\
\text{H} & \quad \text{C} \quad \text{H} & \quad \text{H}_3\text{C} & \quad \text{CH}_3
\end{align*}
\]
24.26

(a)
\[
\begin{align*}
\begin{array}{c}
\text{H}_3\text{C} - \text{O} - \text{C} - \text{O} - \text{CH}_3 \\
\text{H} - \text{H}
\end{array}
\quad \text{NaCH}_3\text{CH}_2\text{O} \quad \rightarrow \\
\begin{array}{c}
\text{H}_3\text{C} - \text{O} - \text{C} - \text{O} - \text{CH}_3 \\
\text{H}
\end{array}
\end{align*}
\]

(b)
\[
\begin{align*}
\begin{array}{c}
\text{C}_6\text{H}_5 - \text{Br} \\
\text{C}_6\text{H}_5
\end{array}
\quad \rightarrow \\
\begin{array}{c}
\text{C}_6\text{H}_5 - \text{OH} \\
\text{C}_6\text{H}_5
\end{array}
\quad \rightarrow \\
\begin{array}{c}
\text{C}_6\text{H}_5\text{CH}_2\text{COOH} \\
\text{C}_6\text{H}_5
\end{array}
\end{align*}
\]

(c)
\[
\begin{align*}
\begin{array}{c}
\text{CH}_3 - \text{CH} - \text{CH}_3 \\
\text{Br}
\end{array}
\quad \rightarrow \\
\begin{array}{c}
\text{CH}_3 - \text{CH} - \text{CH}_3 \\
\text{CH}_3
\end{array}
\quad \rightarrow \\
\begin{array}{c}
\text{CH}_3 - \text{CH} - \text{CH}_2\text{COOH} \\
\text{CH}_3
\end{array}
\end{align*}
\]
Chapter 25

25.2
(a) primary amine
(b) secondary amine
(c) tertiary amine
(d) quaternary ammonium salt

25.3 The integrals correspond to the H’s coming in equivalent groups of 2, 2, 2, 2 and 3 – from downfield to upfield – accounting for the 11 H’s in \(p \)-ethoxyaniline. The two downfield doublets at 6.7 and 6.6 ppm are consistent with phenyl H’s. Moreover, the doublets “point” to each other – i.e. the peaks closest to the other doublet are larger – indicating that they are coupling to each other (coupled doublets well separated in chemical shift show two pairs of equal intensity peaks). This is consistent with the expected coupling of the C-2 and C-3 (C-1 is the amine carbon) phenyl H’s and the equivalent C-6 and C-5 phenyl H’s (to give integrals of 2, while splitting the neighboring peak into a doublet, rather than a triplet). As O is more electronegative than N, the furthest downfield doublet (i.e. at 6.7 ppm) likely corresponds to the C-3 and C-5 H’s. The quartet at 3.9 ppm (integrating to 2) and the triplet at 1.3 ppm (integrating to 3) are consistent with the ethyl group – an alkyl methylene and methyl group, with the methylene H’s downfield because their carbon is bonded to oxygen. The remaining broad peak, integrating to 2, corresponds to the amine H’s. Their peak is broadened due to hydrogen bonding.

25.4 6 peaks. The methyl C peak (C bonded to another alkyl C) should appear in the 10-30 ppm range. The methylene C peak (C bonded to O) should appear in the 50-70 ppm. The phenyl C peaks will be in the 110-150 ppm range, with the C’s bonded directly to O and N furthest downfield.

25.5
(a) \(\text{CH}_3\text{CH}_2\text{NH}_2 \)
(b) \(\text{NaOH} \)
(c) \(\text{CH}_3\text{NHCH}_3 \)
(d) \((\text{CH}_3)_3\text{N} \)

25.6
\[
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{CH}_3 \\

\end{array} + \begin{array}{c}
\text{HBr} \\
\text{HBr} \\
\text{HBr} \\
\end{array} \rightarrow \begin{array}{c}
\text{N}^+ \\
\text{H} \\
\text{CH}_3 \\
\text{Br}^- \\
\end{array}
\]

Copyright © 2011 by Nelson Education Limited
25.7

(a) \[3 \text{CH}_3\text{Cl} + \text{NH}_3 \rightarrow \text{CH}_3\text{NCH}_3\text{CH}_3 \]

(b) \[4 \text{CH}_3\text{Br} + \text{NH}_3 \rightarrow \text{CH}_3\text{N}^+\text{CH}_3\text{Br}^- \]

25.8

\[\text{BrCH}_2\text{CH}_2\text{Br} + \text{H}_2\text{NCH}_3 \rightarrow \text{NCH}_3\text{CH}_3 \]

25.9

(a) \[\text{CH}_3\text{N} \rightarrow \text{CH}_3\text{NBr} \]

(b) \[\text{CH}_3\text{N} \rightarrow \text{CH}_3\text{NCH}_3 \]

(c) \[\text{CH}_3\text{N} \rightarrow \text{CH}_3\text{CCH}_3 \]
25.10

25.11

25.12 The pyridine-like N is more basic – we see the negative charge density appearing as a red patch in the electrostatic potential map.

Chapter 26

26.1 Be$^{2+}$ is more polarizing than Ba$^{2+}$ because it is smaller.

26.2 (a) Chromium (VI) oxide has a very polarizing +6 charged metal cation, producing a chromium oxygen bond with a strong covalent character.
(b) Because chromium (VI) is so strongly polarizing, it is acidic oxide, dissolving in water to produce chromic acid. The more weakly polarizing chromium (III) forms the insoluble oxide, Cr$_2$O$_3$ which is amphoteric.
26.3 \[2 \text{H}_2(g) + \text{O}_2(g) \rightarrow 2 \text{H}_2\text{O}(l)\]
\[\text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2 \text{HCl}(g)\]
\[3 \text{H}_2(g) + \text{N}_2(g) \rightarrow 2 \text{NH}_3(g)\]

26.4 \[2 \text{K}(s) + \text{H}_2(g) \rightarrow 2 \text{KH}(s)\]
The product of this reaction is potassium hydride. It is an ionic solid (at room temperature). It is
a very strong base — consisting of \(\text{K}^+\) and \(\text{H}^-\) ions. It is so strongly reactive that is generally
distributed as a slurry in mineral oil.

26.5 \[2 \text{Na}(s) + \text{Cl}_2(g) \rightarrow 2 \text{NaCl}(s)\] (exothermic reaction)
NaCl is a colourless ionic solid with high melting point. It is soluble in water.

26.6 (a) \[2 \text{Cl}^-(aq) \rightarrow \text{Cl}_2(aq) + 2 \text{e}^-\] (reaction at anode, \(\text{Cl}^-\) is oxidized)
\[2 \text{H}_2\text{O}(l) + 2 \text{e}^- \rightarrow 2 \text{OH}^-(aq) + \text{H}_2(g)\] (reaction at cathode, \(\text{H}_2\text{O}\) is reduced)

(b) \[2 \text{I}^-(aq) \rightarrow \text{I}_2(aq) + 2 \text{e}^-\] (reaction at anode, \(\text{I}^-\) is oxidized)
Same reduction reaction as in part (a)

26.7 \[2 \text{Ba}(s) + \text{O}_2(g) \rightarrow 2 \text{BaO}(s)\] (exothermic reaction)
BaO is a colourless ionic solid with high melting point. It is somewhat soluble in water.

26.8 We would not expect to find calcium occurring naturally in the earth's crust as a free element
because it is too electropositive — it too readily loses its valence electrons. It occurs only in the
+2 oxidation state.

26.9 (a) \[\text{Ga(OH)}_3(s) + 3 \text{HCl}(aq) \rightarrow \text{GaCl}_3(aq) + 3 \text{H}_2\text{O}(l)\]
\[\text{Ga(OH)}_3(s) + 3 \text{NaOH}(aq) \rightarrow \text{Na}_3\text{GaO}_3(aq) + 3 \text{H}_2\text{O}(l)\]

(b) \(\text{Ga}^{3+}(aq)\) is a stronger acid than \(\text{Al}^{3+}\)
(c) 2.77 L

26.10 \[\text{Al}(s) + 3 \text{HCl}(aq) \rightarrow \text{AlCl}_3(aq) + \frac{3}{2} \text{H}_2(g)\]
\[\text{Al}(s) + \frac{3}{2} \text{Cl}_2(g) \rightarrow \text{AlCl}_3(s)\]
\[\text{Al}(s) + \frac{3}{4} \text{O}_2(g) \rightarrow \frac{1}{2} \text{Al}_2\text{O}_3(s)\]

26.11 In \(\text{SiO}_2\), silicon forms a network of single bonds with oxygen — i.e. we get a covalently bonded
network solid. The melting point of \(\text{SiO}_2\) is therefore very high. The bonding in \(\text{CO}_2\) is also
covalent, but \(\text{CO}_2\) is molecular. The intermolecular forces of attraction (dispersion forces)
between \(\text{CO}_2\) molecules are weak and are easily broken. Carbon dioxide is gas at ordinary
temperatures.

26.12 \(\text{PbCl}_4\)
26.13 (a)

\[
\begin{align*}
\vdots & \quad N \equiv N \equiv O : \\
\quad N & \equiv N \equiv O \\
\end{align*}
\]

(b) exothermic

26.14

\[
\begin{align*}
\vdots & \quad N \equiv N \equiv N \\
\end{align*}
\]

26.15

\[
\begin{align*}
\vdots & \quad S \equiv S \\
\end{align*}
\]

26.16 (a) \(F_2 \) can oxidize \(Cl^- (X = F, Y = Cl) \) for example, whereas (b) \(Cl_2 \) cannot oxidize \(F^- (X = Cl, Y = F) \).

26.17 (a) \(Z^*(Ar) = +6.75; Z^*(K) = +2.2; Z^*(Cl) = +6.1 \)

The valence electrons of \(Ar \) are held very tightly. In contrast, the valence electron of \(K \) experiences a much smaller effective nuclear charge. Although the valence electrons of neighbouring \(Cl \) are also held tightly, the effective nuclear charge in this case is not quite as large.

(b) \(Z^*(Ar^-) = +1.2; Z^*(K^-) = +1.85; Z^*(Cl^-) = +5.75 \)

The valence electron of \(Ar^- \) is held quite weakly. In contrast, the valence electrons of \(Cl^- \) experience a much larger effective nuclear charge. Even the \(K^- \) ion’s valence electrons are held more tightly.

26.18 The ratio of the density of nitrogen to helium = 7.00.

26.19 While xenon and krypton have closed valence s and p subshells, they do have open d subshells in their valence shells. They can therefore expand their valence shells to form bonds. Nevertheless, there is a sizeable energy gap to the d subshells and such bonds are not very stable – but can be formed. In the case of neon, the valence shell has \(n = 2 \). To form bonds, neon would need to use \(n=3 \) shell orbitals. There is a very large energy gap to such orbitals, and while one could envision such bonds they would be extremely unstable, and no such bonds have ever been formed.
27.1 (a) methyl amine, CH_3NH_2, (b) methyl nitrile, CH_3CN, (c) azide, N_3^- and (e) bromide, Br$^-$ are monodentate ligands.
(d) en - ethylenediamine, $\text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2$ and (f) phen - phenanthroline, $\text{C}_{12}\text{H}_8\text{N}_2$ are bidentate (special case of polydentate) ligands.

27.2 NH_4^+ has no lone pairs and does not serve as a ligand.

27.3 (a) $[\text{Co(NH}_3)_3\text{Cl}_3]$
(b) (i) oxidation number: +3. coordination number: 6
(ii) oxidation number: +2. coordination number: 6

27.4 (a) 2.0×10^{-6} M
(b) 4.0×10^{-6} M
(c) 5.0×10^4

27.5 (i) $\Delta G^\circ = -67.2 \text{ kJ mol}^{-1}$

The entropy term accounts for the better part of this negative change in free energy. The large positive entropy of this process results because 6 ligands are freed with only 3 bidentate ligands taking their place.

(ii) $K = 6.02 \times 10^{11}$

27.6 Only 1.0 mol of AgCl(s) will precipitate.
[Co(NH$_3$)$_5$ Br] SO$_4$(aq) + BaCl$_2$(aq) \rightarrow [Co(NH$_3$)$_5$ Br] Cl$_2$(aq) + BaSO$_4$(s)
27.8

(a)

(b)

(c)

(d)
27.9
(a) *cis* and *trans* isomers
(b) no isomers
(c) no isomers
(d) two enantiomers
(e) no isomers
(f) no isomers

27.10
(a) \([\text{Fe(en)}_3]^2+\) has a stereocenter at \(\text{Fe}^{2+}\) giving rise to two enantiomers.
(b) The cobalt ion in *trans*-\([\text{Co(en)}_2\text{Br}_2]^+\) is a stereocenter, giving rise to two isomers – the *cis* and *trans* species.
(c) The cobalt ion in *fac*-\([\text{Co(en)}(\text{H}_2\text{O})\text{Cl}_3]\) is a stereocenter, giving rise to two isomers – the *fac* and *mer* species
(d) The platinum ion in \([\text{Pt(NH}_3)(\text{H}_2\text{O})(\text{Cl})(\text{NO}_2)]\) is a stereocenter. For example, the \(\text{NH}_3\) ligand can be *trans* to any of the other three ligands.

27.11
\([\text{Ti(OH}_2)_6]^{3+} < [\text{Ti(NH}_3)_6]^{3+} < [\text{Ti(CN)}_6]^{3-}\)

27.12
(a) In \([\text{Ru(H}_2\text{O})_6]^2+\), \(\text{Ru}^{2+}\) is in the +2 oxidation state.

(b) In \([\text{Ni(NH}_3)_6]^2+\), \(\text{Ni}^{2+}\) is in the +2 oxidation state.
27.13

(a) \(d_{x'y'} \quad d_{z'} \)

\[
\begin{array}{c}
\downarrow \\
d_{xy}
\end{array}
\quad
\begin{array}{c}
\downarrow \\
d_{xz}
\end{array}
\quad
\begin{array}{c}
\uparrow \\
d_{yz}
\end{array}
\]

paramagnetic

\([\text{Mn(CN)}_6]^3^- \) 5 d electrons

(c) \(d_{x'y'} \quad d_{z'} \)

\[
\begin{array}{c}
\downarrow \\
d_{xy}
\end{array}
\quad
\begin{array}{c}
\downarrow \\
d_{xz}
\end{array}
\quad
\begin{array}{c}
\uparrow \\
d_{yz}
\end{array}
\]

paramagnetic

\([\text{Fe(H}_2\text{O)}_6]^{3+} \) 5 d electrons

(b) \(d_{x'y'} \quad d_{z'} \)

\[
\begin{array}{c}
\uparrow \\
d_{xy}
\end{array}
\quad
\begin{array}{c}
\uparrow \\
d_{xz}
\end{array}
\quad
\begin{array}{c}
\uparrow \\
d_{yz}
\end{array}
\]

diamagnetic

\([\text{Co(NH}_3)_6]^{3+} \) 6 d electrons

(d) \(d_{x'y'} \quad d_{z'} \)

\[
\begin{array}{c}
\uparrow \\
d_{xy}
\end{array}
\quad
\begin{array}{c}
\uparrow \\
d_{xz}
\end{array}
\quad
\begin{array}{c}
\uparrow \\
d_{yz}
\end{array}
\]

paramagnetic

\([\text{Cr(en)}_3]^{2+} \) 4 d electrons

Chapter 28

There are no in-chapter answers necessary for this chapter.

Chapter 29

29.1 (a) Threose is an aldobutose
(b) Ribulose is a ketopentose
(c) Tagatose is a ketohexose
(d) 2-deoxyribose is an aldopentose

29.2

\[
\begin{array}{c}
\text{O} \\
\text{HO} \\
\text{H} \\
\text{OH}
\end{array}
\]
29.3

(S)-2-chlorobutane

(R)-2-chlorobutane

29.4

(a) H \text{NH}_2 \\
\text{H} \text{C}_3 \text{O} \\
\text{H} \text{OH} \\

(b) \text{H} \text{O} \\
\text{H} \text{C}_3 \text{H} \\
\text{O} \\
\text{H} \\

(c) \text{H} \text{C}_3 \text{O} \\
\text{H} \text{C}_3 \text{H} \\
\text{O} \\
\text{H} \\

29.5

(a) \text{L-sugar} \\
(b) \text{D-sugar} \\
(c) \text{D-sugar} \\

29.6

(a) \text{D-sugar} \\
(b) \text{L-sugar} \\
(c) \text{L-sugar}
29.7

α-D-ribofuranose

β-D-ribofuranose

29.8

α-D-fructofuranose

β-D-fructofuranose

29.9

α-D-fructopyranose

β-D-fructopyranose
β-D-mannopyranose

β-D-galactopyranose

β-D-mannopyranose and β-D-galactopyranose should be about equally stable

(a) Pyruvate decarboxylase and (c) alcohol dehydrogenase are are lyases.

Chymotrypsin is a hydrolase.
DNA sequence 3’-CCGATTAGGCA-5’ is complementary to GGCTAATCCGT (by default this is 5’ to 3’). Arranged 5’ to 3’, this sequence is ACGGATTAGCC.

RNA sequence 5’-CUAAUGGCAU-3’ or UACGGUAAUC is complementary to DNA sequence 3’ GATTACCGTA.

RNA sequence 5’ UUCGCAGAGU 3’ was transcribed from DNA sequence 3’ ACTCTGCGAA.

(a) Ala, alanine, is coded by GCU, GCC, GCA or GCG
(b) Phe, phenylalanine, is coded by UUU or UUC.
(c) Leu, leucine, is coded by UUA, UUG, CUU, CUC, CUA or CUG
(d) Tyr, tyrosine, is coded by UAU or UAC.
29.20 5’ CUU-AUG-GCU-UGG-CCC-UAA codes for the polypeptide, Leu-Met-Ala-Trp-Pro-stop
i.e. leucine, methionine, alanine, tryptophan and proline are linked together, in this
order, then the chain is terminated at proline.

29.21 mRNA base sequence 5’ CUU-AUG-GCU-UGG-CCC-UAA-3’ gives rise to tRNA sequence 3’
−GAA UAC CGA ACC GGG-5’.

29.22 mRNA base sequence 5’ CUU-AUG-GCU-UGG-CCC-UAA 3’ arose from transcription of
DNA sequence, 3’-GAA TAC CGA ACC GGG ATT-5’.

Chapter 30

30.1 (a) \(^{222}_{86}\)Rn → \(^{218}_{84}\)Po + \(^{4}_{1}\)He
(b) \(^{218}_{84}\)Po → \(^{218}_{85}\)At + \(^{0}_{1}\)e

30.2 \(E_{\text{photon}} = 9.9 \times 10^{-14}\) J
\(E = 60\) GJ mol\(^{-1}\)

30.3 (a) \(^{232}_{90}\)Th → \(^{208}_{82}\)Pb + 6 \(^{4}_{2}\)He + 4 \(^{0}_{-1}\)e
(b) \(^{232}_{90}\)Th → \(^{228}_{88}\)Ra + \(^{4}_{2}\)He
\(^{228}_{88}\)Ra → \(^{228}_{89}\)Ac + \(^{0}_{-1}\)e
\(^{228}_{89}\)Ac → \(^{228}_{90}\)Th + \(^{0}_{-1}\)e

30.4 (a) \(^{13}_{6}\)N → \(^{13}_{6}\)C + \(^{0}_{1}\)β
(b) \(^{40}_{20}\)Ca + \(^{0}_{-1}\)β → \(^{41}_{19}\)K
(c) \(^{90}_{38}\)Sr → \(^{90}_{39}\)Y + \(^{0}_{-1}\)β
(d) \(^{22}_{11}\)Na → \(^{22}_{12}\)Mg + \(^{0}_{-1}\)β

30.5 (a) \(^{32}_{14}\)Si → \(^{32}_{15}\)P + \(^{0}_{-1}\)β
(b) \(^{45}_{22}\)Ti → \(^{45}_{21}\)Sc + \(^{0}_{1}\)β
(c) \(^{239}_{94}\)Pu → \(^{235}_{92}\)U + \(^{4}_{2}\)He
(d) \(^{42}_{19}\)K → \(^{42}_{20}\)Ca + \(^{0}_{-1}\)β

30.6 3.087 \times 10^9\) KJmol\(^{-1}\)
\(5.145 \times 10^8\) kJ mol\(^{-1}\) nucleons
30.7 (a) 0.094 mg
 (b) 36.9 years
 (c) 81.7 years

30.8 26.9 days

30.9 6200 years

30.10 The sample is $t = 3010$ years old.
The ring data give the age of the tree to be 2853 ± 52 years

30.11 150.0 mg